

SeisIO

SeisIO is a collection of utilities for reading and downloading geophysical timeseries data.

Intro

	Introduction
	Overview

	Installation

	Getting Started

	Learning SeisIO

	Updating

	First Steps
	Start Here

	Operations on SeisData structures
	Adding channels to a SeisData structure

	Search, Sort, and Prune

	Next Steps

	Working with Data
	Creating Data Containers

	Acquiring Data

	Keeping Track
	Source Logging

	Channel Maintenance

	Taking Notes

	Checking Your Work

	Getting Help
	Examples

	Tests

	Command-Line Help
	Dedicated Help Functions
	Submodule SEED

	Submodule SUDS

	Formats Guide

	Help-Only Functions

	All About Keywords

Reading Files

	Time-Series Files
	Supported File Formats

	Supported Keywords
	Performance Tips

	Channel Matching

	Examples
	Memory Mapping

	Format Descriptions and Notes

	Format-Specific Information
	SEG Y
	Setting the Location Subfield

	UW

	Win32

	Other File I/O Functions

	Metadata Files
	Supported File Formats

	Supported Keywords

	HDF5 Files
	Supported Keywords

	XML Meta-Data
	StationXML

	QuakeML

Downloading

	Web Services
	Time-Series Data
	Keywords
	Special Behavior

	Data Formats

	Station Metadata

	Examples

	Bad Requests

	SeedLink
	Keywords

	Special Behavior
	Special Methods

	SeedLink Utilities

Writing Files

	Write Suppport
	Write Functions
	HDF5/ASDF
	Supported Keywords
	Write Method: Add (add=true)

	Write Method: Overwrite (ovr = true)

	QuakeML

	SAC

	SeisIO Native

	Station XML

Processing

	Data Processing
	Basic Operations

	Customizable Operations
	Convert Seismograms
	Keywords

	Behavior and Usage Warnings

	Fill Gaps
	Keywords

	Merge
	Merge Behavior
	Which channels merge?

	What happens to merged fields?

	What does merge! resolve?

	When SeisIO Won’t Merge

	Seismic Instrument Response
	Keywords

	Precision and Memory Optimization

	Causality

	Synchronize
	Specifying start time (s)

	Specifying end time (t)

	Taper
	Keywords

	Zero-Phase Filter
	Keywords

Submodules

	Submodules
	Using Submodules

	RandSeis

	SEED
	Scanning SEED Volumes
	Supported Keywords

	Interaction with Online Requests

	UW

	Nodal
	Reading Nodal Data Files
	Supported Keywords
	Non-Standard Behavior

	Supported File Formats
	Silixa TDMS Support Status

	Nodal SEG Y Support Status

	Working with NodalData objects
	NodalData Assumptions

	Other Differences from SeisData objects

	Types

	Quake
	Types

	Web Queries
	Notes

	Notes

	References

	Web Query Keywords

	Example

	Utility Functions

	Reading Earthquake Data Files
	Supported File Formats

	Supported Keywords
	QuakeML

	SeisHDF
	Additional Functions
	Supported Keywords

Appendices

	Appendices
	Time Syntax
	Time Types and Behavior
	Special Behavior with two Real arguments

	Data Requests Syntax
	Channel ID Syntax
	Wildcards and Blanks

	Channel Configuration Files

	Server List

	SeisIO Standard Keywords

	Utility Functions

	SeisIO Native Format
	SeisIO File

	Simple Object Types
	EQLoc

	EQMag

	SeisPha

	SourceTime

	StringVec

	Location Types
	GenLoc

	GeoLoc

	UTMLoc

	XYLoc

	Response Types
	GenResp

	PZResp

	The Misc Dictionary
	Misc
	Dictionary Contents

	String Array (c == 0x81)

	Other Array (c == 0x80 or c > 0x81)

	String (c == 0x01)

	Bits Type (c == 0x00 or 0x01 < c < 0x7f)

	Compound Object Types
	PhaseCat

	EventChannel

	SeisChannel

	EventTraceData

	SeisData

	SeisHdr

	SeisSrc

	SeisEvent

	Data Type Codes
	Loc Type Codes

	Resp Type Codes

	Other Type Codes
	SeisIO Object Type codes

	File Format Version History

Introduction

SeisIO is a framework for working with univariate geophysical data on 64-bit systems.
SeisIO is designed around three basic principles:

	Ease of use: one shouldn’t need a PhD to understand command syntax.

	Fluidity: working with data shouldn’t feel clumsy.

	Performance: speed and efficient memory usage matter.

The project is home to an expanding set of web clients, file format readers,
and analysis utilities.

Overview

SeisIO stores data in minimalist containers that track the bare necessities for
analysis. New data are easily added with basic operators like +. Unwanted
channels can be removed just as easily. Data can be written to a number of
file formats.

Installation

From the Julia prompt: press] to enter the Pkg environment, then type

add SeisIO; build; precompile

Dependencies should install automatically. To verify that everything works
correctly, type

test SeisIO

and allow 10-20 minutes for tests to complete. Exit the Pkg environment by pressing Backspace or Control + C.

Getting Started

At the Julia prompt, type

using SeisIO

You’ll need to repeat this step whenever you restart Julia, as with any
command-line interpreter (CLI) language.

Learning SeisIO

An interactive tutorial using Jupyter notebooks in a web browser can be accessed
from the Julia prompt with these commands:

p = pathof(SeisIO)
d = dirname(realpath(p))
cd(d)
include("../tutorial/install.jl")

SeisIO also has an online tutorial guide, intended as a gentle
introduction for people less familiar with the Julia language. The two are
intentionally redundant; Jupyter isn’t compatible with all systems and browsers.

For a faster start, skip to any of these topics:

	Working with Data: learn how to manage data using SeisIO

	Reading Data: learn how to read data from file

	Web Requests: learn how to download data

Updating

From the Julia prompt: press] to enter the Pkg environment, then type
update. Once package updates finish, restart Julia to use them.

First Steps

SeisIO is designed around easy, fluid, and fast data access.
At the most basic level, SeisIO uses an array-like structure called a
SeisChannel for single-channel data, and a multichannel structure
named SeisData.

Start Here

Create a new, empty SeisChannel object with

Ch = SeisChannel()

The meanings of the field names are explained here; you can also type
?SeisChannel at the Julia prompt. You can edit field values manually, e.g.,
returning to the code block above,

Ch = SeisChannel()
Ch.loc = GeoLoc(lat=-90.0, lon=0.0, el=2835.0, az=0.0, inc=0.0)
Ch.name = "South pole"

or you can set them with keywords at creation:

Ch = SeisChannel(name="Templo de San José de La Floresta, Ajijic", fs=40.0)

Note that Strings in field names support full Unicode, so even graffiti
can be saved and read back in. This is useful for data containing non-English
characters.

SeisData structures are collections of channel data. They can be created with
the SeisData() command, which can optionally create any number of empty
channels at a time, e.g.,

S = SeisData() # empty structure, no channels
S1 = SeisData(12) # empty 12-channel structure

They can be explored similarly:

S = SeisData(1)
S.name[1] = "South pole"
S.loc[1] = GeoLoc(lat=-90.0, lon=0.0, el=2835.0, az=0.0, inc=0.0)

A collection of channels becomes a SeisData structure; for example,

L = GeoLoc(lat=46.1967, lon=-122.1875, el=1440.0, az=0.0, inc=0.0)
S = SeisData(SeisChannel(), SeisChannel())
S = SeisData(randSeisData(5), SeisChannel(),
 SeisChannel(id="UW.SEP..EHZ", name="Darth Exploded", loc=L))

You can push channels onto existing SeisData structures, like adding one key
to a dictionary. For example,

push!(S, Ch)

copies Ch to a new channel in S. Note that the new S[3] is not a view into Ch.
This is deliberate, as otherwise the workspace quickly becomes a mess of
redundant channels. Clean up with Ch = [] to free memory before moving on.

Operations on SeisData structures

We’re now ready for a short tutorial of what we can do with data structures.
In the commands below, as in most of this documentation, Ch is a
SeisChannel object and S is a SeisData object.

Adding channels to a SeisData structure

You’ve already seen one way to add a channel to SeisData: push!(S, SeisChannel())
adds an empty channel. Here are others:

S = randSeisData(4)
n = 3
append!(S, SeisData(n))

This initializes an empty n-channel SeisData structure and appends it to the
end of S, similar to appending one array to another. S will have 7 channels,
but the last three are empty.

The addition operator, +, calls push! and add!, with one key difference:
to ensure reflexivity (i.e., S1 + S2 == S2 + S1), the + operator sorts the
output (command sort!) and prunes empty channels (command prune!). Thus,

S = SeisData(2)
S1 = randSeisData(3)
S += S1

outputs only the three channels of random data initialized in the second line of
the code block; in addition, they’re sorted by ID, so it’s likely that S != S1.

Search, Sort, and Prune

The easiest way to find channels of interest in a data structure is to use
findid or findchan. findid(id, S) returns the numeric index i of the first channel in S where S.id[i] == id. findchan(cha, S) returns an array of numeric indices in S to all channels whose IDs satisfy occursin(cha, S.id[i]).

For example:

L = GeoLoc(lat=46.1967, lon=-122.1875, el=1440.0, az=0.0, inc=0.0)
S = SeisData(randSeisData(5), SeisChannel(id="YY.STA1..EHZ"),
 SeisChannel(id="UW.SEP..EHZ", name="Darth Exploded", loc=L))
findid("UW.SEP..EHZ", S) # 7
findchan("EHZ", S) # [6, 7], maybe others (depending on randSeisData)

You can sort channels in a structure by channel ID with the sort! command.

Several functions exist to prune empty and unwanted channels from SeisData
structures. Revisiting the previous code block, for example, try these:

deleteat!(S, 1:2) # Delete first two channels of S
S -= 3 # Delete third channel of S

Extract S[1] as a SeisChannel, removing it from S
C = pull(S, 1)

Delete channels containing ".SEP."
delete!(S, ".SEP.", exact=false)

Delete all channels whose S.x is empty
prune!(S)
S

S should have one channel left.

In the delete! command, specifying exact=false means that any channel whose
ID partly matches the string “.SEP.” gets deleted; by default,
delete!(S, str) only matches channels where str is the exact ID. This is
an efficient way to remove unresponsive subnets and unwanted channel types, but
beware of accidental over-matching.

Next Steps

Because tracking arbitrary operations can be difficult, several functions have
been written to keep track of data and operations in a semi-automated way. See
the next section, working with data, for detailed discussion of
managing data from the Julia command prompt.

Working with Data

This section is a tutorial for tracking and managing SeisIO data.

Creating Data Containers

Create a new, empty object using any of the following commands:

	Object

	Purpose

	SeisChannel()

	A single channel of univariate (usually time-series) data

	SeisData()

	Multichannel univariate (usually time-series) data

	SeisHdr()

	Header structure for discrete seismic events

	SeisEvent()

	Discrete seismic events; includes SeisHdr and SeisData objects

Acquiring Data

	Read files with read_data

	Make web requets with get_data

	Initiate real-time streaming sessions to SeisData objects with seedlink

Keeping Track

A number of auxiliary functions exist to keep track of channels:

	
findchan(id::String, S::SeisData)

	

	
findchan(S::SeisData, id::String)

	

Get all channel indices i in S with id \(\in\) S.id[i]. Can do partial id
matches, e.g. findchan(S, “UW.”) returns indices to all channels whose IDs begin
with “UW.”.

	
findid(S::SeisData, id)

	

Return the index of the first channel in S where id = id. Requires an
exact string match; faster than Julia findfirst on small structures.

	
findid(S::SeisData, Ch::SeisChannel)

	

Equivalent to findfirst(S.id.==Ch.id).

	
namestrip!(S[, convention])

	

Remove bad characters from the :name fields of S. Specify convention as a
string (default is “File”):

	Convention

	Characters Removed:sup:(a)

	“File”

	"$*/:<>?@\^|~DEL

	“HTML”

	"&';<>©DEL

	“Julia”

	$\DEL

	“Markdown”

	!#()*+-.[\]_`{}

	“SEED”

	.DEL

	“Strict”

	!"#$%&'()*+,-./:;<=>?@[\]^`{|}~DEL

(a) DEL here is \x7f (ASCII/Unicode U+007f).

	
timestamp()

	

Return current UTC time formatted yyyy-mm-ddTHH:MM:SS.

	
track_off!(S)

	

Turn off tracking in S and return a boolean vector of which channels were added
or changed.

	
track_on!(S)

	

Begin tracking changes in S. Tracks changes to :id, channel additions, and
changes to data vector sizes in S.x.

Does not track data processing operations on any channel i unless
length(S.x[i]) changes for channel i (e.g. filtering is not tracked).

Warning: If you have or suspect gapped data in any channel, calling
ungap! while tracking is active will always flag a channel as changed.

Source Logging

The :src field records the last data source used to populate each channel;
usually a file name or URL.

When a data source is added to a channel, including the first time data are
added, it’s also recorded in the :notes field. Use show_src(S, i) to print
all data sources for channel S[i] to stdout (see below for details).

Channel Maintenance

A few functions exist specifically to simplify data maintenance:

	
prune!(S::SeisData)

	

Delete all channels from S that have no data (i.e. S.x is empty or non-existent).

	
C = pull(S::SeisData, id::String)

	

Extract the first channel with id=id from S and return it as a new SeisChannel
structure. The corresponding channel in S is deleted.

	
C = pull(S::SeisData, i::integer)

	

Extract channel i from S as a new SeisChannel object C, and delete
the corresponding channel from S.

Taking Notes

Functions that add and process data note these operations in the :notes field
of each object affected. One can also add custom notes with the note! command:

	
note!(S, i, str)

	

Append str with a timestamp to the :notes field of channel number i of S.

	
note!(S, id, str)

	

As above for the first channel in S whose id is an exact match to id.

	
note!(S, str)

	

if str* mentions a channel name or ID, only the corresponding channel(s) in **S is annotated; otherwise, all channels are annotated.

Clear all notes from channel i of S.

clear_notes!(S, id)

Clear all notes from the first channel in S whose id field exactly matches id.

clear_notes!(S)

Clear all notes from every channel in S.

Checking Your Work

If you need to check what’s been done to a channel, or the sources present in the channel data, these commands are helpful:

	
show_processing(S::SeisData)

	

	
show_processing(S::SeisData, i::Int)

	

	
show_processing(C::SeisChannel)

	

Tabulate and print all processing steps in :notes to stdout in human-readable format.

	
show_src(S::SeisData)

	

	
show_src(S::SeisData, i::Int)

	

	
show_src(C::SeisChannel)

	

Tabulate and print all data sources in :notes to stdout.

	
show_writes(S::SeisData)

	

	
show_writes(S::SeisData, i::Int)

	

	
show_writes(C::SeisChannel)

	

Tabulate and print all write operations in :notes to stdout in human-readable format.

Getting Help

In addition to the Juypter notebooks and online tutorial guide,
other sources of help are available:

	Examples

	Automated Tests

	Command-Line Help

Examples

Several worked examples exist throughout these documents, in addition to examples.jl and the interactive tutorial.

Invoke the command-prompt examples with the following command sequence:

p = pathof(SeisIO)
d = dirname(realpath(p))
cd(d)
include("../test/examples.jl")

Tests

The commands in tests/ can be used as templates; to install test data and run all tests, execute these commands:

using Pkg
Pkg.test("SeisIO") # lunch break recommended. Tests can take 20 minutes.
 # 99.5% code coverage wasn't an accident...
p = pathof(SeisIO)
cd(realpath(dirname(p) * "/../test/"))

Command-Line Help

A great deal of additional help functions are available at the Julia command prompt. All SeisIO functions and structures have their own docstrings. For example, typing ?SeisData at the Julia prompt produces the following:

SeisData

A custom structure designed to contain the minimum necessary information
for processing univariate geophysical data.

SeisChannel

A single channel designed to contain the minimum necessary information
for processing univariate geophysical data.

Fields
========

Field Description
–––––– ––
:n Number of channels [^1]
:c TCP connections feeding data to this object [^1]
:id Channel id. Uses NET.STA.LOC.CHAN format when possible
:name Freeform channel name
:loc Location (position) vector; any subtype of InstrumentPosition
:fs Sampling frequency in Hz; fs=0.0 for irregularly-sampled data.
:gain Scalar gain
:resp Instrument response; any subtype of InstrumentResponse
:units String describing data units. UCUM standards are assumed.
:src Freeform string describing data source.
:misc Dictionary for non-critical information.
:notes Timestamped notes; includes automatically-logged info.
:t Matrix of time gaps in integer μs, formatted [Sample# Length]
:x Time-series data

Dedicated Help Functions

These functions take no arguments and dump information to stdout.

Submodule SEED

	
dataless_support()

	

Output lists of supported blockettes in dataless SEED to stdout.

	
mseed_support()

	

Output lists of supported blockettes in mini-SEED to stdout.

	
resp_wont_read()

	

Output “hall of shame” of known examples of broken RESP to stdout.

	
seed_support()

	

Output full information on SEED support to stdout.

Submodule SUDS

	
suds_support()

	

Dump info to STDOUT on SUDS support for each numbered SUDS structure.

	Green structures are fully supported and read into memory.

	Yellow structures can be dumped to stdout with read_data(“suds”, …, v=2).

	Red structures are skipped and don’t exist in our test data.

Formats Guide

formats is a constant static dictionary with descriptive entries of each data format. Access the list of formats with sort(keys(formats)). Then try a command like formats[“slist”] for detailed info. on the slist format.

Help-Only Functions

These functions contain help docstrings but execute nothing. They exist to answer common questions.

	
?web_chanspec

	

Answers: how do I specify channels in a web request? Outputs channel id syntax to stdout.

	
?seis_www

	

Answers: which servers are available for FDSN queries? Outputs the FDSN server list to stdout.

	
?TimeSpec

	

All About Keywords

Invoke keywords help with ?SeisIO.KW for complete information on SeisIO shared keywords and meanings.

Time-Series Files

	
read_data!(S, fmt::String, filepat [, KWs])

	

	
S = read_data(fmt::String, filepat [, KWs])

	

Read data from a supported file format into memory.

fmt

Case-sensitive string describing the file format. See below.

filepat

Read files with names matching pattern filepat. Supports wildcards.

KWs

Keyword arguments; see also SeisIO standard KWs or type ?SeisIO.KW. See table below for the list.

Supported File Formats

	File Format

	String

	Strict Match

	AH-1

	ah1

	id, fs, gain, loc, resp, units

	AH-2

	ah2

	id, fs, gain, loc, resp

	Bottle (UNAVCO)

	bottle

	id, fs, gain

	GeoCSV, time-sample pair

	geocsv

	id

	GeoCSV, sample list

	geocsv.slist

	id

	Lennartz ASCII

	lenartz

	id, fs

	Mini-SEED

	mseed

	id, fs

	PASSCAL SEG Y

	passcal

	id, fs, gain, loc

	SAC

	sac

	id, fs, gain

	SEG Y (rev 0 or rev 1)

	segy

	id, fs, gain, loc

	SEISIO

	seisio

	id, fs, gain, loc, resp, units

	SLIST (ASCII sample list)

	slist

	id, fs

	SUDS

	suds

	id

	UW data file

	uw

	id, fs, gain, units

	Win32

	win32

	id, fs, gain, loc, resp, units

Strings are case-sensitive to prevent any performance impact from using matches
and/or lowercase().

Note that read_data with file format “seisio” largely exists as a convenience
wrapper; it reads only the first SeisIO object from each file that can be
converted to a SeisData structure. For more complicated read operations,
rseis should be used.

Warning: GeoCSV files must be Unix text files; DOS text files, whose lines
end in “\r\n”, will not read properly. Convert with dos2unix or equivalent
Windows Powershell commands.

Supported Keywords

	Keyword

	Used By

	Type

	Default

	Meaning

	cf

	win32

	String

	“”

	win32 channel info filestr

	full

	1

	Bool

	false

	read full header into :misc?

	ll

	segy

	UInt8

	0x00

	set loc in :id? (see below)

	memmap

	*

	Bool

	false

	use Mmap.mmap to buffer file?

	nx_add

	2

	Int64

	360000

	minimum size increase of x

	nx_new

	3

	Int64

	86400000

	length(x) for new channels

	jst

	win32

	Bool

	true

	are sample times JST (UTC+9)?

	swap

	4

	Bool

	true

	byte swap?

	strict

	*

	Bool

	true

	use strict match?

	v

	*

	Integer

	0

	verbosity

	vl

	*

	Bool

	0

	verbose source logging? 5

Table Footnotes

	1

	used by ah1, ah2, sac, segy, suds, uw; information read into :misc varies by file format.

	2

	see table below.

	3

	used by bottle, mseed, suds, win32

	4

	used by bottle, mseed, suds, win32

	5

	used by mseed, passcal, segy; swap is automatic for sac.

	6

	adds one line to :notes per file read. It is not guaranteed that files listed in S.notes[i] contain data for channel i; rather, all files listed are from the read operation(s) that populated i.

Performance Tips

	mmap=true improves read speed for some formats, particularly ASCII readers, but requires caution. In our benchmarks, the following significant (>3%) speed changes are observed:

	Significant speedup: ASCII formats, including metadata formats

	Slight speedup: mini-SEED

	Significant slowdown: SAC

2. With mseed or win32 data, adjust nx_new and nx_add based on the sizes of
the data vectors that you expect to read. If the largest has Nmax samples,
and the smallest has Nmin, we recommend nx_new=Nmin and nx_add=Nmax-Nmin.

Default values can be changed in SeisIO keywords, e.g.,

SeisIO.KW.nx_new = 60000
SeisIO.KW.nx_add = 360000

The system-wide defaults are nx_new=86400000 and nx_add=360000. Using these
values with very small jobs will greatly decrease performance.

3. strict=true may slow read_data based on the fields matched as part of
the file format. In general, any file format that can match on more than id
and fs will read slightly slower with this option.

Channel Matching

By default, read_data continues a channel if data read from file matches the
channel id (field :id). In some cases this is not enough to guarantee a good match. With strict=true, read_data matches against fields :id, :fs, :gain, :loc, :resp, and :units. However, not all of these fields are stored natively in all file formats. Column “Strict Match” in the first table lists which fields are stored (and can be logically matched) in each format with strict=true.

Examples

	
	S = read_data("uw", "99011116541W", full=true)

	
	Read UW-format data file 99011116541W

	Store full header information in :misc

	
	read_data!(S, "sac", "MSH80*.SAC")

	
	Read SAC-format files matching string pattern MSH80*.SAC

	Read into existing SeisData object S

	
	S = read_data("win32", "20140927*.cnt", cf="20140927*ch", nx_new=360000)

	
	Read win32-format data files with names matching pattern 2014092709*.cnt

	Use ASCII channel information filenames that match pattern 20140927*ch

	Assign new channels an initial size of nx_new samples

Memory Mapping

memmap=true is considered unsafe because Julia language handling of SIGBUS/SIGSEGV and associated risks is undocumented as of SeisIO v1.0.0. Thus, for example, we don’t know what a connection failure during memory-mapped file I/O does. In some languages, this situation without additional signal handling was notorious for corrupting files.

Under no circumstances should mmap=true be used to read files directly from a drive whose host device power management is independent of the destination computer’s. This includes all work flows that involve reading files directly into memory from a connected data logger. It is not a sufficient workaround to set a data logger to “always on”.

Format Descriptions and Notes

Additional format information can be accessed from the command line by typing
SeisIO.formats("FMT") where FMT is the format name; keys(SeisIO.formats)
for a list.

	AH (Ad-Hoc) was developed as a machine-independent seismic data format based on External Data Representation (XDR).

	Bottle is a single-channel format maintained by UNAVCO (USA).

	GeoCSV [http://geows.ds.iris.edu/documents/GeoCSV.pdf]: an extension of “human-readable”, tabular file format Comma-Separated Values (CSV).

	Lennartz: a variant of sample list (SLIST) used by Lennartz portable digitizers.

	PASSCAL [https://www.passcal.nmt.edu/content/seg-y-what-it-is]: A single- channel variant of SEG Y with no file header, developed by PASSCAL/New Mexico Tech and used with PASSCAL field equipment.

	SAC [https://ds.iris.edu/files/sac-manual/manual/file_format.html]: the Seismic Analysis Code data format, originally developed by LLNL for the eponymous command-line interpreter.

	SEED [https://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf]: adopted by the International Federation of Digital Seismograph Networks (FDSN) as an omnibus seismic data standard. mini-SEED is a data-only variant that uses only data blockettes.

	SEG Y [http://wiki.seg.org/wiki/SEG_Y]: Society of Exploration Geophysicists data format. Common in the energy industry. Developed and maintained by SEG.

	SLIST: An ASCII file with a one-line header and data written to file in ASCII string format.

	SUDS: A similar format to SEED, developed by the US Geological Survey (USGS) in the late 1980s.

	UW: created in the 1970s by the Pacific Northwest Seismic Network (PNSN), USA, for event archival; used until the early 2000s.

	Win32 [http://eoc.eri.u-tokyo.ac.jp/WIN/Eindex.html]: maintained by the National Research Institute for Earth Science and Disaster Prevention (NIED), Japan. Continuous data are divided into files that contain a minute of data from multiple channels stored in one-second segments.

Format-Specific Information

SEG Y

Only SEG Y rev 0 and rev 1 [https://seg.org/Portals/0/SEG/News%20and%20Resources/Technical%20Standards/seg_y_rev1.pdf] with standard headers are supported. The following are known support limitations:

	A few SEG Y headers are partially implemented or unused. These will be refined as we obtain more test data with standardized SEG Y headers and known results.

	Not all SEG Y files use the gain formula in the SEG Y rev 1 manual. Users are urged to consult equipment manufacturers and/or coders whose software converts proprietary data formats to SEG Y.

	SeisIO does not use the Textual File Header (file bytes 1-3600) or Extended Textual File Header records, as these were never standardized. Specify full=true to read the raw bytes into vectors in :misc. These byte vectors can be parsed manually by the user after file read.

Setting the Location Subfield

The location subfield within :id (“LL” in NN.SSSS.LL.CC) is normally blank, but can be set from an arbitrary Int32 quantity in SEG Y. The reason for this behavior is that SEG Y has at least six “recommended” quantities that can indicate a unique channel. Use one by passing the corresponding value from the table below to keyword “ll”:

	Code

	U

	Bytes

	:misc

	Usual trace header quantity

	0x00

	
	
	
	None (Default); don’t set LL

	0x01

	Y

	001-004

	trace_seq_line

	Trace sequence number within line

	0x02

	Y

	005-008

	trace_seq_file

	Trace sequence number within SEG Y file

	0x03

	
	009-012

	rec_no

	Original field record number

	0x04

	Y

	013-016

	channel_no

	Trace number within original field record

	0x05

	
	017-020

	energy_src_pt

	Energy source point number

	0x06

	
	021-024

	cdp

	Ensemble number

	0x07

	?

	025-028

	trace_in_ensemble

	Trace number within the ensemble

	0x08

	
	037-040

	src-rec_dist

	Distance from center of source point

	0x09

	
	041-044

	rec_ele

	Receiver group elevation

	0x0a

	
	045-048

	src_ele

	Surface elevation at source

	0x0b

	
	049-052

	src_dep

	Source depth below surface (positive)

	0x0c

	
	053-056

	rec_datum_ele

	Datum elevation at receiver group

	0x0d

	
	057-060

	src_datum_ele

	Datum elevation at source

	0x0e

	
	061-064

	src_water_dep

	Water depth at source

	0x0f

	
	065-068

	rec_water_dep

	Water depth at group

	0x10

	
	073-076

	src_x

	Source coordinate - X

	0x11

	
	077-080

	src_y

	Source coordinate - Y

	0x12

	
	081-084

	rec_x

	Group coordinate - X

	0x13

	
	085-088

	rec_y

	Group coordinate - Y

	0x14

	
	181-184

	cdp_x

	X coordinate of ensemble (CDP) position

	0x15

	
	185-188

	cdp_y

	Y coordinate of ensemble (CDP) position

	0x16

	
	189-192

	inline_3d

	For 3-D poststack data, in-line number

	0x17

	
	193-196

	crossline_3d

	For 3-D poststack data, cross-line number

	0x18

	
	197-200

	shot_point

	Shotpoint number (2-D post-stack data)

	0x19

	
	205-208

	trans_mant

	Transduction Constant (mantissa)

	0x1a

	?

	233-236

	unassigned_1

	Unassigned — For optional information

	0x1b

	?

	237-240

	unassigned_2

	Unassigned — For optional information

A SEG Y file usually increments one (or more) of 0x01, 0x02, or 0x04 for each trace. Unfortunately, we can’t imagine any way to use all three, or even two, in a SEGY-compliant channel ID.

Warning: for any quantity above,

	Numeric values >1296 lead to nonstandard characters in the LL subfield

	Numeric values >7200 lead to non-unique :id fields, with undefined results

	Numeric values >9216 cause read_data to throw an InexactError

UW

Only UW v2 (UW-2) data files are supported. We have no reason to believe that
any UW-1 data files are in circulation, and external converters to UW-2 exist.

Win32

Use older channel files with caution. They were not controlled by any central
authority until the late 2010s. Inconsistencies between different versions of
the same channel file were found by SeisIO developers as recently as 2015.

Other File I/O Functions

	
rseis(fname)

	

Read SeisIO native format data into an array of SeisIO structures.

	
sachdr(fname)

	

Print headers from SAC file to stdout.

	
segyhdr(fname[, PASSCAL=true::Bool])

	

Print headers from SEG Y file to stdout. Specify passcal=true for PASSCAL SEG Y.

Metadata Files

	
read_meta!(S, fmt::String, filepat [, KWs])

	

	
S = read_meta(fmt::String, filepat [, KWs])

	

Read metadata in file format fmt matching file pattern filestr into S.

fmt

Lowercase string describing the file format. See below.

filepat

Read files with names matching pattern filepat. Supports wildcards.

KWs

Keyword arguments; see also SeisIO standard KWs or type ?SeisIO.KW.

Supported File Formats

	File Format

	String

	Dataless SEED

	dataless

	FDSN Station XML

	sxml

	SACPZ

	sacpz

	SEED RESP

	resp

Warning: Dataless SEED, SACPZ, and RESP files must be Unix text files; DOS
text files, whose lines end in “\r\n”, will not read properly. Convert with
dos2unix or equivalent Windows Powershell commands.

Supported Keywords

	KW

	Used By

	Type

	Default

	Meaning

	memmap

	all

	Bool

	false

	use Mmap.mmap to buffer file?

	msr

	sxml

	Bool

	false

	read full MultiStageResp?

	s

	all

	TimeSpec

	
	Start time

	t

	all

	TimeSpec

	
	Termination (end) time

	units

	resp

	Bool

	false

	fill in MultiStageResp units?

	
	dataless

	
	
	

	v

	all

	Integer

	0

	verbosity

Note: mmap=true improves read speed for ASCII formats but requires caution. Julia language handling of SIGBUS/SIGSEGV and associated risks is unknown and undocumented.

HDF5 Files

Of the increasingly popular HDF5-based formats for geophysical data, only ASDF
is supported at present. Support for other (sub)formats is planned.

	
S = read_hdf5(fname::String, s::TimeSpec, t::TimeSpec, [, KWs])

	

	
read_hdf5!(S::GphysData, fname::String, s::TimeSpec, t::TimeSpec, [, KWs])

	

Read data in seismic HDF5 file format from file fname into S.

KWs

Keyword arguments; see also SeisIO standard KWs or type ?SeisIO.KW.

This has one fundamental design difference from read_data:
HDF5 archives are assumed to be large files with data from multiple channels;
they are scanned selectively for data of interest to read, rather than read
into memory in their entirety.

Supported Keywords

	KW

	Type

	Default

	Meaning

	id

	String

	“...*”

	id pattern, formated nn.sss.ll.ccc

	
	
	
	(net.sta.loc.cha); FDSN-style wildcards (a)

	msr

	Bool

	true

	read full (MultiStageResp) instrument resp?

	v

	Integer

	0

	verbosity

(a) A question mark (‘?’) is a wildcard for a single character (exactly
one); an asterisk (‘*’) is a wildcard for zero or more characters.

Writing to HDF5 volumes is supported through write_hdf5, described in Writing to File.

XML Meta-Data

SeisIO can read and write the following XML metadata formats:

	QuakeML Version 1.2

	StationXML Version 1.1

StationXML

	
read_sxml(fpat[, KWs])

	

Read FDSN StationXML files matching string pattern fpat into a new SeisData
object.

Keywords:

s: start time. Format “YYYY-MM-DDThh:mm:ss”, e.g., “0001-01-01T00:00:00”.

t: termination (end) time. Format “YYYY-MM-DDThh:mm:ss”.

msr: (Bool) read instrument response info as MultiStageResp?

msr=true processes XML files to give full response information

at every documented stage of the acquisition process: sampling, digitization,

FIR filtering, decimation, etc.

How often is MultiStageResp needed?

Almost never. By default, the :resp field of each channel contains a

simple instrument response with poles, zeros, sensitivity (:a0), and

sensitivity frequency (:f0). Very few use cases require more detail.

QuakeML

	
read_qml(fpat)

	

Read QuakeML files matching string pattern fpat. Returns a tuple containing
an array of SeisHdr objects H and an array of SeisSrc objects R.
Each pair (H[i], R[i]) describes the preferred location (origin, SeisHdr) and
event source (focal mechanism or moment tensor, SeisSrc) of event i.

If multiple focal mechanisms, locations, or magnitudes are present in a single
Event element of the XML file(s), the following rules are used to select one of
each per event:

FocalMechanism

1. preferredFocalMechanismID if present

2. Solution with best-fitting moment tensor

3. First FocalMechanism element

Magnitude

1. preferredMagnitudeID if present

2. Magnitude whose ID matches MomentTensor/derivedOriginID

3. Last moment magnitude (lowercase scale name begins with “mw”)

4. First Magnitude element

Origin

1. preferredOriginID if present

2. derivedOriginID from the chosen MomentTensor element

3. First Origin element

Non-essential QuakeML data are saved to misc in each SeisHdr or SeisSrc object
as appropriate.

Web Services

Data requests use get_data! for FDSN, IRISWS, and IRIS PH5WS data services; for (near)
real-time streaming, see SeedLink.

Time-Series Data

	
get_data!(S, method, channels; KWs)

	

	
S = get_data(method, channels; KWs)

	

Retrieve time-series data from a web archive to SeisData structure S.

method

“FDSN”: :FDSNWS dataselect. Change FDSN servers with keyword

src using the server list (see ?seis_www).

“IRIS”: IRISWS timeseries.

“PH5”: PH5WS timeseries.

channels

Channels to retrieve – string, string array, or parameter file.

Type ?chanspec at the Julia prompt for more info.

Keywords

Shared Keywords

fmt, nd, opts, rad, reg, si, to, v, w, y

Seismic Processing Keywords

	unscale: divide gain from data after download

	demean: demean data after download

	detrend: detrend data after download

	taper: taper data after download

	ungap: remove gaps in data after download

	rr: remove seismic instrument response after download

Other Keywords

	autoname: determine file names from channel ID?

	msr: get instrument responses as MultiStageResonse? (“FDSN” only)

	s: start time

	t: termination (end) time

	xf: XML file name for output station XML

Special Behavior

	autoname=true attempts to emulate IRISWS channel file naming conventions. For this to work, however, each request must return exactly one channel. A wildcard (“*” or “?”) in a channel string deactivates autoname=true.

	Seismic processing keywords follow an order of operations that matches the ordering of the above list.

	IRISWS requests always remove the stage zero gain on the server side, because the service doesn’t include the gain constant in the request. This ensures that :gain is accurate in SeisIO.

	IRISWS requests don’t fill :loc or :resp fields in mini-SEED and don’t fill the :resp field in SAC. For cross-format consistency, the stage-zero (scalar) gain is removed from any request to IRISWS and the :gain field in such channels is 1.0.

Data Formats

SeisIO supports the following data format strings in timeseries web requests, subject to the limitations of the web service:

	“miniseed” or “mseed” for mini-SEED

	“sac” or “sacbl” for binary little-endian SAC

	“geocsv” for two-column (tspair) GeoCSV

Station Metadata

	
FDSNsta!(S, chans, KW)

	

	
S = FDSNsta(chans, KW)

	

Fill channels chans of SeisData structure S with information retrieved from
remote station XML files by web query.

Shared Keywords

src, to, v

Other Keywords

	msr: get instrument responses as MultiStageResonse?

	s: start time

	t: termination (end) time

	xf: XML file name for output station XML

Examples

Note that the “src” keyword is used by FDSNWS dataselect queries, but not by IRISWS or PH5WS timeseries queries.

1. Download 10 minutes of data from four stations at Mt. St. Helens (WA, USA), delete the low-gain channels, and save as SAC files in the current directory.

S = get_data("FDSN", "CC.VALT, UW.SEP, UW.SHW, UW.HSR", src="IRIS", t=-600)
S -= "UW.SHW..ELZ"
S -= "UW.HSR..ELZ"
writesac(S)

2. Get 5 stations, 2 networks, all channels, last 600 seconds of data at IRIS

CHA = "CC.PALM, UW.HOOD, UW.TIMB, CC.HIYU, UW.TDH"
TS = u2d(time())
TT = -600
S = get_data("FDSN", CHA, src="IRIS", s=TS, t=TT)

3. A request to FDSN Potsdam, time-synchronized, with some verbosity

ts = "2011-03-11T06:00:00"
te = "2011-03-11T06:05:00"
R = get_data("FDSN", "GE.BKB..BH?", src="GFZ", s=ts, t=te, v=1, y=true)

4. Get channel information for strain and seismic channels at station PB.B001:

S = FDSNsta("CC.VALT..,PB.B001..BS?,PB.B001..E??")

	Get trace data from IRISws from TS to TT at channels CHA

S = SeisData()
CHA = "UW.TDH..EHZ, UW.VLL..EHZ, CC.VALT..BHZ"
TS = u2d(time()-86400)
TT = 600
get_data!(S, "IRIS", CHA, s=TS, t=TT)

6. Get synchronized trace data from IRISws with a 55-second timeout on HTTP requests, written directly to disk.

CHA = "UW.TDH..EHZ, UW.VLL..EHZ, CC.VALT..BHZ"
TS = u2d(time())
TT = -600
S = get_data("IRIS", CHA, s=TS, t=TT, y=true, to=55, w=true)

7. Request 10 minutes of continuous vertical-component data from a small May 2016 earthquake swarm at Mt. Hood, OR, USA, and cosine taper after download:

STA = "UW.HOOD.--.BHZ,CC.TIMB.--.EHZ"
TS = "2016-05-16T14:50:00"; TE = 600
S = get_data("IRIS", STA, s=TS, t=TE)

8. Grab data from a predetermined time window in two different formats

ts = "2016-03-23T23:10:00"
te = "2016-03-23T23:17:00"
S = get_data("IRIS", "CC.JRO..BHZ", s=ts, t=te, fmt="sacbl")
T = get_data("IRIS", "CC.JRO..BHZ", s=ts, t=te, fmt="miniseed")

Bad Requests

Failed data requests are saved to special channels whose IDs begin with “XX.FAIL”. The HTTP response message is stored as a String in :misc["msg"]; display to STDOUT with println(stdout, S.misc[i]["msg"]).

Unparseable data requests are saved to special channels whose IDs begin with “XX.FMT”. The raw response bytes are stored as an Array{UInt8,1} in :misc["raw"] and can be dumped to file or parsed with external programs as needed.

One special channel is created per bad request.

SeedLink

SeedLink [https://www.seiscomp3.org/wiki/doc/applications/seedlink] is a
TCP/IP-based data transmission protocol that allows near-real-time access to
data from thousands of geophysical monitoring instruments. See
data keywords list and channel id syntax for options.

	
seedlink!(S, mode, chans, KWs)

	

	
seedlink!(S, mode, chans, patts, KWs)

	

	
S = seedlink(mode, chans, KWs)

	

Initiate a SeedLink session in DATA mode to feed data from channels chans with selection patterns patts to SeisData structure S. A handle to a TCP connection is appended to S.c. Data are periodically parsed until the connection is closed. One SeisData object can support multiple connections, provided that each connection’s streams feed unique channels.

mode

SeedLink mode (“DATA”, “FETCH”, or “TIME”; case-sensitive).

chans

Channel specification can use any of the following options:

1. A comma-separated String where each pattern follows the syntax NET.STA.LOC.CHA.DFLAG, e.g. UW.TDH..EHZ.D. Use “?” to match any single character.

2. An Array{String,1} with one pattern per entry, following the above syntax.

3. The name of a configuration text file, with one channel pattern per line; see Channel Configuration File syntax.

patts

Data selection patterns. See official SeedLink documentation; syntax is identical.

Keywords

Shared Keywords

v, w

SeedLink Keywords

	kw

	def

	type

	meaning

	gap

	3600

	R

	a stream with no data in >gap seconds is considered offline

	kai

	600

	R

	keepalive interval (s)

	port

	18000

	I

	port number

	refresh

	20

	R

	base refresh interval (s) 1

	seq

	
	S

	Starting sequence hex value, like “5BE37A”

	u

	rtserve.iris.washington.edu

	S

	base SeedLink service URL, no “http://”

	x_on_err

	true

	Bool

	exit on error?

Table Footnotes

	1

	This value is a base value; a small amount is added to this number by each new SeedLink session to minimize the risk of congestion

Change these with SeisIO.KW.SL.[key] = value, e.g., SeisIO.KW.SL.refresh = 30.

Special Behavior

	
	SeedLink follows unusual rules for wild cards in sta and patts:

	
	* is not a valid SeedLink wild card.

	The LOC and CHA fields can be left blank in sta to select all locations and channels.

	
	DO NOT feed one data channel from multiple SeedLink connections. This leads to TCP congestion on your computer, which can have severe consequences:

	
	A channel fed by multiple SeedLink connections will have many small segments, all out of order. merge! might fix this if caught quickly, but with hundreds of disjoint segments, expect memory and CPU issues.

	Your SeedLink connection will probably reset.

	Julia may freeze, requiring kill -9. To the best of our knowledge Julia has no special handling to mitigate TCP congestion.

	Your data may be corrupted, including disk writes from w=true.

Special Methods

	close(S.c[i]) ends SeedLink connection i.

	!deleteat(S.c, i) removes a handle to closed SeedLink connection i.

SeedLink Utilities

	
SL_info(v, url)

	

Retrieve SeedLink information at verbosity level v from url. Returns XML as a string. Valid strings for L are ID, CAPABILITIES, STATIONS, STREAMS, GAPS, CONNECTIONS, ALL.

	
has_sta(sta[, u=url, port=n])

	

SL keywords: gap, port

Other keywords: u specifies the URL without “http://”

Check that streams exist at url for stations sta, formatted
NET.STA. Use “?” to match any single character. Returns true for
stations that exist. sta can also be the name of a valid config
file or a 1d string array.

Returns a BitArray with one value per entry in sta.

	
has_stream(cha::Union{String, Array{String, 1}}, u::String)

	

	
has_stream(sta::Array{String, 1}, sel::Array{String, 1}, u::String, port=N::Int, gap=G::Real)

	

SL keywords: gap, port

Other keywords: u specifies the URL without “http://”

Check that streams with recent data exist at url u for channel spec
cha, formatted NET.STA.LOC.CHA.DFLAG, e.g. “UW.TDH..EHZ.D,
CC.HOOD..BH?.E”. Use “?” to match any single character. Returns true
for streams with recent data. cha can also be the name of a valid config file.

If two arrays are passed to has_stream, the first should be
formatted as SeedLink STATION patterns (SSSSS NN, e.g.
[“TDH UW”, “VALT CC”]); the second should be an array of SeedLink selector
patterns (LLCCC.D, e.g. [“??EHZ.D”, “??BH?.?”]).

Write Suppport

The table below sumamrizes the current write options for SeisIO. Each function is described in detail in this chapter.

	Structure/Description

	Output Format

	Function

	Submodule

	GphysChannel

	ASDF

	write_hdf5

	

	GphysChannel

	SAC timeseries

	writesac

	

	GphysChannel channel metadata

	StationXML

	write_sxml

	

	GphysChannel instrument response

	SAC polezero

	writesacpz

	

	GphysData

	ASDF

	write_hdf5

	

	GphysData

	SAC timeseries

	writesac

	

	GphysData channel metadata

	StationXML

	write_sxml

	

	GphysData instrument response

	SAC polezero

	writesacpz

	

	SeisEvent

	ASDF

	write_hdf5

	

	SeisEvent header and source info

	ASDF QuakeML

	asdf_wqml

	

	SeisEvent header and source info

	QuakeML

	write_qml

	

	SeisEvent trace data only

	SAC timeseries

	writesac

	

	Array{SeisEvent, 1}

	ASDF QuakeML

	asdf_wqml

	

	Array{SeisHdr, 1}

	QuakeML

	write_qml

	

	Array{SeisHdr, 1}, Array{SeisSrc, 1}

	ASDF QuakeML

	asdf_wqml

	

	Array{SeisHdr, 1}, Array{SeisSrc, 1}

	QuakeML

	write_qml

	

	SeisHdr

	QuakeML

	write_qml

	

	SeisHdr, SeisSrc

	ASDF QuakeML

	asdf_wqml

	

	SeisHdr, SeisSrc

	QuakeML

	wqml

	

	any SeisIO structure

	SeisIO file

	wseis

	

	primitive data type or array

	ASDF AuxiliaryData

	asdf_waux

	

Methods for SeisEvent, SeisHdr, or SeisSrc are part of submodule SeisIO.Quake. asdf_waux and asdf_wqml are part of SeisIO.SeisHDF..

Write Functions

Functions are organized by file format.

HDF5/ASDF

	
write_hdf5(fname, S)

	

Write data from S to file fname in a seismic HDF5 format. The default file format is ASDF.

With ASDF files, if typeof(S) == SeisEvent, S.hdr and S.source are written (appended) to the “QuakeML ” element.

Supported Keywords

	KW

	Type

	Default

	Meaning

	add

	Bool

	false

	Add new traces to file as needed?

	chans

	ChanSpec

	1:S.n

	Channels to write to file

	len

	Period

	Day(1)

	Length of new traces added to file

	ovr

	Bool

	false

	Overwrite data in existing traces?

	v

	Integer

	0

	verbosity

Write Method: Add (add=true)

Initializes new traces (filled with NaNs) of length = len as needed, and overwrite with data in appropriate places.

add=true follows these steps in this order:
1. Determine times of all data in S[chans] and all traces in “Waveforms/”.
2. For all data in S[chans] that cannot be written to an existing trace, a new trace of length = len sampled at S.fs[i] is initialized (filled with NaNs).
3. If a segment in S[chans] overlaps a trace in “Waveforms/” (including newly- created traces):
+ Merge the header data in S[chans] into the relevant station XML.
+ Overwrite the relevant segment(s) of the trace.

Unless len exactly matches the time boundaries of each segment in S, new traces will contain more data than S, with the extra samples initialized to NaNs. Presumably these will be replaced with real data in subsequent overwrites.

Write Method: Overwrite (ovr = true)

If ovr=true is specified, but add=false, write_hdf5 only overwrites existing data in hdf_out.
* No new trace data objects are created in hdf_out.
* No new file is created. If hdf_out doesn’t exist, nothing happens.
* If no traces in hdf_out overlap segments in S, hdf_out isn’t modified.
* Station XML is merged in channels that are partly overwritten.

QuakeML

	
write_qml(fname, Ev::SeisEvent; v::Integer=0)

	

Write event metadata from SeisEvent Ev to file fname.

	
write_qml(fname, SHDR::SeisHdr; v::Integer=0)

	

	
write_qml(fname, SHDR::Array{SeisHdr, 1}; v::Integer=0)

	

Write QML to file fname from SHDR.

If fname exists, and is QuakeML, SeisIO appends the existing XML. If the
file exists, but is NOT QuakeML, an error is thrown; the file isn’t overwritten.

write_qml(fname, SHDR::SeisHdr, SSRC::SeisSrc; v::Integer=0)
write_qml(fname, SHDR::Array{SeisHdr,1}, SSRC::Array{SeisSrc,1}; v::Integer=0)

Write QML to file fname from SHDR and SSRC.

Warning: To write data from SeisSrc structure R in array SSRC, it must
be true that R.eid == H.id for some H in array SHDR.

SAC

	
writesac(S::GphysData, chans=CC, v=V)

	

	
writesac(C::GphysChannel; chans=CC, fname=FF, v=V)

	

Write SAC data to SAC files with auto-generated names. With any GphysChannel subtype, specifying fname=FF sets the filename to FF.

	
writesacpz(pzf, S[, chans=CC])

	

Write fields from SeisIO structure S to SACPZ file pzf. Specify which channels to write in a GphysDaya structure with chans=CC.

SeisIO Native

	
wseis(fname, S)

	

	
wseis(fname, S, T, U...)

	

Write SeisIO data to file fname. Multiple objects can be written at once.

Station XML

	
write_sxml(fname, S[, chans=CC])

	

Write station XML from the fields of S to file fname. Specify channel numbers to write in a GphysData object with chans=CC.

Use keyword chans=Cha to restrict station XML write to Cha. This keyword can accept an Integer, UnitRange, or Array{Int64,1} argument.

Data Processing

Supported processing operations are described below.

In most cases, a “safe” version of each function can be invoked to create a new object with the processed output.

Any function that can logically operate on a single-channel object will do so. Any function that operates on a SeisData object can be applied to the :data field of a SeisEvent object.

Basic Operations

These functions have no keywords that fundamentally change their behavior.

Remove the mean from all channels i with S.fs[i] > 0.0. Specify irr=true to also
remove the mean from irregularly sampled channels. Specify chans=CC to restrict
to channel number(s) CC. Ignores NaNs.

Remove the polynomial trend of degree n from every regularly-sampled channel
in S using a least-squares polynomial fit. Specify chans=CC to restrict
to channel number(s) CC. Ignores NaNs.

Compute the envelope of channel data in S. Only affects regularly-sampled
channels.

	
nanfill!(S)

	

For each channel i in S, replace all NaNs in S.x[i] with the mean
of non-NaN values.

	
resample!(S::GphysData [, chans=CC, fs=FS])

	

	
resample!(C::SeisChannel, fs::Float64)

	

Resample data in S to FS Hz. If keyword fs is not specified, data are
resampled to the lowest non-zero value in S.fs[CC]. Note that a poor choice
of fs can lead to upsampling and other bad behaviors.

Use keyword chans=CC to only resample channel numbers CC. By default,
all channels i with S.fs[i] > 0.0 are resampled.

	
unscale!(S[, chans=CC, irr=false])

	

Divide the gains from all channels i with S.fs[i] > 0.0. Specify
chans=CC to restrict to channel number(s) CC. Specify irr=true to also
remove gains of irregularly-sampled channels.

Customizable Operations

Convert Seismograms

Seismograms can be converted to or from displacement, velocity, or acceleration
using convert_seis:

	
convert_seis!(S[, chans=CC, units_out=UU, v=V])

	

	
convert_seis!(C[, units_out=UU, v=V])

	

Converts all seismic data channels in S to velocity seismograms,
differentiating or integrating as needed.

Keywords

	units_out=UU: specify output units: “m”, “m/s” (default), or “m/s²”

	chans=CC: restrict seismogram conversion to seismic data channels in CC

	v=V: verbosity

Behavior and Usage Warnings

Long Seismograms: convert_seis becomes less reversible as seismograms lengthen,
especially at Float32 precision, due to loss of significance [https://en.wikipedia.org/wiki/Floating-point_arithmetic#Accuracy_problems].
At single (Float32) precision, seismograms with N ~ 10^6 samples are
reconstructable after one conversion (e.g. “m” ==> “m/s” can be reversed, with
output approximately equal to the original data). After multiple conversions
(i.e., “m” ==> “m/s²” or “m/s²” ==> “m”), Float32 data cannot be perfectly
reconstructed in this way, though reconstruction errors are typically small.

Rectangular Integration: integration is always rectangular; irregularly-spaced
seismic data are not processed by convert_seis. Summation uses an in-place
variant of Kahan-Babuška-Neumaier summation [https://github.com/JuliaMath/KahanSummation.jl].

Fill Gaps

	
ungap!(S[, chans=CC, m=true, tap=false])

	

	
ungap!(C[, m=true, tap=false])

	

Fill time gaps in each channel with the mean of the channel data.

Keywords

	chans=CC: only ungap channels CC.

	m=false: this flag fills gaps with NaNs instead of the mean.

	tap=true: taper data before filling gaps.

Merge

	
merge!(S::GphysData, U::GphysData)

	

Merge two GphysData structures. For timeseries data, a single-pass merge-and-prune
operation is applied to value pairs whose sample times are separated by less than
half the sampling interval.

	
merge!(S::GphysData)

	

“Flatten” a GphysData structure by merging data from identical channels.

Merge Behavior

Which channels merge?

	Channels merge if they have identical values for :id, :fs, :loc, :resp, and :units.

	An unset :loc, :resp, or :units field matches any set value in the corresponding field of another channel.

What happens to merged fields?

	The essential properties above are preserved.

	Other fields are combined.

	Merged channels with different :name values use the name of the channel with the latest data before the merge; other names are logged to :notes.

What does merge! resolve?

	Issue

	Resolution

	Empty channels

	Delete

	Duplicated channels

	Delete duplicate channels

	Duplicated windows in channel(s)

	Delete duplicate windows

	Multiple channels, same properties(a)

	Merge to a single channel

	Channel with out-of-order time windows

	Sort in chronological order

	Overlapping windows, identical data, time-aligned

	Windows merged

	Overlapping windows, identical data, small time offset(a)

	Time offset corrected, windows merged

	Overlapping windows, non-identical data

	Samples averaged, windows merged

(a) “Properties” here are :id, :fs, :loc, :resp, and :units.

(b) Data offset >4 sample intervals are treated as overlapping and non-identical.

When SeisIO Won’t Merge

SeisIO does not combine data channels if any of the five fields above
are non-empty and different. For example, if a GphysData object S contains two
channels, each with id “XX.FOO..BHZ”, but one has fs=100 Hz and the other fs=50 Hz,
merge! does nothing.

It’s best to merge only unprocessed data. Data segments that were processed
independently (e.g. detrended) will be averaged pointwise when merged, which
can easily leave data in an unusuable state.

	
mseis!(S::GphysData, U::GphysData, ...)

	

Merge multiple GphysData structures into S.

Seismic Instrument Response

	
translate_resp!(S, resp_new[, chans=CC, wl=g])

	

	
translate_resp!(Ch, resp_new[, wl=g])

	

Translate the instrument response of seismic data channels to resp_new.
Replaces field :resp with resp_new for all affected channels.

	
remove_resp!(S, chans=CC, wl=g])

	

	
remove_resp!(Ch, wl=g])

	

Remove (flatten to DC) the instrument response of Ch, or of seismic data
channels CC in S. Replaces :resp with the appropriate (all-pass)
response.

Keywords

	C=cha restricts response translation for GphysData object S to channel(s) cha. Accepts an Integer, UnitRange, or Array{Int64,1} argument; does not accept string IDs. By default, all seismic data channels in S have their responses translated to resp_new.

	wl=g sets the waterlevel to g (default: g = eps(Float32) ~ 1.1f-7). The waterlevel is the minimum magnitude (absolute value) of the normalized old frequency response; in other words, if the old frequency response has a maximum magnitude of 1.0, then no response coefficient can be lower than g. This is useful to prevent “divide by zero” errors, but setting it too high will cause errors.

Precision and Memory Optimization

To optimize speed and memory use, instrument response translation maps data to
Complex{Float32} before translation; thus, with Float64 data, there can be
minor rounding errors.

Instrument responses are also memory-intensive. The minimum memory consumption
to translate the response of a gapless Float32 SeisChannel object is ~7x the
size of the object itself.

More precisely, for an object S (of Type <: GphysData or GphysChannel),
translation requires memory ~ 2 kB + the greater of (7x the size of the longest
Float32 segment, or 3.5x the size of the longest Float64 segment). Translation
uses four vectors – three complex and one real – that are updated and
dynamically resized as the algorithm loops over each segment:

	Old response container: Array{Complex{Float32,1}}(undef, Nx)

	New response container: Array{Complex{Float32,1}}(undef, Nx)

	Complex data container: Array{Complex{Float32,1}}(undef, Nx)

	Real frequencies for FFT: Array{Float32,1}(undef, Nx)

…where Nx is the number of samples in the longest segment in S.

Causality

Response translation adds no additional processing to guarantee causality. At
a minimum, most users will want to call detrend! and taper! before
translating instrument responses.

Synchronize

	
sync!(S::GphysData[, s=ST, t=EN, v=VV])

	

Synchronize all data in S to start at ST and terminate at EN with verbosity level VV.

For regularly-sampled channels, gaps between the specified and true times
are filled with the mean; this isn’t possible with irregularly-sampled data.

Specifying start time (s)

	s=”last”: (Default) sync to the last start time of any channel in S.

	s=”first”: sync to the first start time of any channel in S.

	A numeric value is treated as an epoch time (?time for details).

	A DateTime is treated as a DateTime. (see Dates.DateTime for details.)

	Any string other than “last” or “first” is parsed as a DateTime.

Specifying end time (t)

	t=”none”: (Default) end times are not synchronized.

	t=”last”: synchronize all channels to end at the last end time in S.

	t=”first” synchronize to the first end time in S.

	numeric, datetime, and non-reserved strings are treated as for -s.

Taper

	
taper!(S[, keywords])

	

Cosine taper each channel in S around time gaps. Specify chans=CC to restrict
to channel number(s) CC. Does not modify irregularly-sampled data channels.

	
taper!(C[, keywords])

	

Cosine taper each segment of time-series data in GphysChannel object C that
contains at least N_min total samples. Returns if C is irregularly sampled.

Keywords

	chans: Only taper the specified channels.

	N_min: Data segments with N < N_min total samples are not tapered.

	t_max: Maximum taper edge in seconds.

	α: Taper edge area; as for a Tukey window, the first and last 100*:math:alpha`% of samples in each window are tapered, up to `t_max seconds of data.

Zero-Phase Filter

	
filtfilt!(S::GphysData[; KWs])

	

Apply a zero-phase filter to regularly-sampled data in S. Irregularly-sampled data are never processed by filtfilt!.

	
filtfilt!(C::SeisChannel[; KWs])

	

Apply zero-phase filter to C.x. Filtering is applied to each contiguous data
segment in C separately.

Keywords

	KW

	Default

	Type

	Description

	chans

	[]

	(a)

	channel numbers to filter

	fl

	1.0

	Float64

	lower corner frequency [Hz] (b)

	fh

	15.0

	Float64

	upper corner frequency [Hz] (b)

	np

	4

	Int64

	number of poles

	rp

	10

	Int64

	pass-band ripple (dB)

	rs

	30

	Int64

	stop-band ripple (dB)

	rt

	“Bandpass”

	String

	response type (type of filter)

	dm

	“Butterworth”

	String

	design mode (name of filter)

(a) Allowed types are Integer, UnitRange, and Array{Int64, 1}.

(b) By convention, the lower corner frequency (fl) is used in a

Highpass filter, and fh is used in a Lowpass filter.

Default filtering KW values can be changed by adjusting the shared keywords, e.g., SeisIO.KW.Filt.np = 2 changes the default number of poles to 2.

Submodules

	Name

	Purpose

	ASCII

	ASCII file formats (includes GeoCSV, SLIST, and variants)

	FastIO

	Replacement low-level I/O functions to avoid thread locking

	Quake

	Earthquake seismology

	RandSeis

	Generate SeisIO structures with quasi-random entries

	SEED

	Standard for the Exchange of Earthquake Data (SEED) file format

	SUDS

	Seismic Unified Data System (SUDS) file format

	SeisHDF

	Dedicated support for seismic HDF5 subformats

	UW

	University of Washington data format

Using Submodules

At the Julia prompt, type using SeisIO.NNNN where NNNN is the submodule name; for example, using SeisIO.Quake loads the Quake submodule.

RandSeis

This submodule is used to quickly generate SeisIO objects with quasi-random
field contents. Access it with “using SeisIO.RandSeis”

The following are true of all random data objects generated by the RandSeis
module:

	Channels have SEED-compliant IDs, sampling frequencies, and data types.

	Random junk fills :notes and :misc.

	Sampling frequency (:fs) is chosen from a set of common values.

	Channel data are randomly generated.

	Time gaps are automatically inserted into regularly-sampled data.

	
randPhaseCat()

	

Generate a random seismic phase catalog suitable for testing EventChannel,
EventTraceData, and SeisEvent objects.

	
randSeisChannel([c=false, s=false])

	

Generate a SeisChannel of random data. Specify c=true for campaign-style
(irregularly-sampled) data (fs = 0.0); specify s=true to guarantee seismic data.
s=true overrides c=true.

	
randSeisData([c=0.2, s=0.6])

	

	
randSeisData(N[, c=0.2, s=0.6])

	

Generate 8 to 24 channels of random seismic data as a SeisData object. Specify N for a fixed number of channels.

	100*c% of channels will have irregularly-sampled data (fs = 0.0)

	100*s% of channels are guaranteed to have seismic data.

	
randSeisEvent([c=0.2, s=0.6])

	

	
randSeisEvent(N[, c=0.2, s=0.6])

	

Generate a SeisEvent structure filled with random values. Specify N for a fixed number of channels.

	100*c% of channels will have irregularly-sampled data (fs = 0.0)

	100*s% of channels are guaranteed to have seismic data.

	
randSeisHdr()

	

Generate a SeisHdr structure filled with random values.

	
randSeisSrc()

	

Generate a SeisSrc structure filled with random values.

SEED

Submodule for the Standard for the Exchange of Earthquake Data (SEED) file format; includes additional functionality.

	
dataless_support()

	

Dump status of dataless SEED blockette support to stdout.

	
mseed_support()

	

Dump status of mini-SEED blockette support to stdout.

	
seed_support()

	

Dump status of SEED blockette support to stdout.

Scanning SEED Volumes

	
scan_seed(fname)

	

Scan a single SEED file and report on the contents. Much faster than read_data as no samples are decoded/read and most blockettes are skipped. Control output behavior with keywords.

Supported Keywords

	KW

	Type

	Default

	Meaning

	memmap

	Bool

	false

	memory-map file?

	npts

	Bool

	true

	output samples per channel?

	ngaps

	Bool

	true

	output time gaps per channel?

	nfs

	Bool

	true

	output number of fs vals per channel?

	quiet

	Bool

	false

	true prints nothing to stdout

	seg_times

	Bool

	false

	output exact gap times?

	fs_times

	Bool

	false

	output exact times of fs changes?

	v

	Integer

	0

	verbosity

Note that seg_times and fs_times dump verbose per-channel tabulation to stdout.

Users are encourage to submit feature request Issues if there’s a need to scan for other changes within a SEED volume.

Interaction with Online Requests

scan_seed cannot interact directly with online SEED requests. As a workaround, do get_data(..., w=true) to dump the raw request directly to disk, then scan the file(s) created.

UW

The UW submodule extends functionality for the University of Washington (UW) file format(s).

The UW data format was created in the 1970s by the Pacific Northwest Seismic Network (PNSN), USA, for event archival. It remained in use through the 1990s. A UW event is described by a pickfile and a corresponding data file, whose filenames were identical except for the last character. The data file is self-contained; the pick file is not required to read raw trace data. However, station locations were stored in an external text file.

Only UW-2 data files are supported by SeisIO. We have only seen UW-1 data files in Exabyte tapes from the 1980s.

	
uwpf(pf[, v])

	

Read UW-format seismic pick file pf. Returns a tuple of (SeisHdr, SeisSrc).

	
uwpf!(W, pf[, v::Int64=KW.v])

	

Read UW-format seismic pick info from pickfile f into SeisEvent object W. Overwrites W.source and W.hdr with pickfile information. Keyword v controls verbosity.

Nodal

The Nodal submodule is intended to handle data from nodal arrays. Nodal arrays
differ from standard seismic data in that the start and end times of data
segments are usually synchronized.

Reading Nodal Data Files

	
S = read_nodal(fmt, fname [, KWs])

	

Read data in file format fmt from file fname into memory. Returns a NodalData object.

Supported Keywords

	KW

	Type

	Default

	Meaning

	chans

	ChanSpec

	Int64[]

	channels to read

	nn

	String

	N0

	network subfield in :id

	s

	TimeSpec

	0001-01-01T00:00:00

	start time

	t

	TimeSpec

	9999-12-31T12:59:59

	end time

	v

	Integer

	0

	verbosity

Non-Standard Behavior

Real values supplied to keywords s= and t= are treated as seconds relative to file begin time. Most SeisIO functions that accept TimeSpec arguments treat Real values as seconds relative to now().

Supported File Formats

	File Format

	String

	Notes

	Silixa TDMS

	silixa

	Limited support; see below

	SEG Y

	segy

	Field values are different from read_data output

Silixa TDMS Support Status

	Currently only reads file header and samples from first block

	Not yet supported (test files needed):

	first block additional samples

	second block

	second block additional samples

	Awaiting manufacturer clarification:

	parameters in :info

	position along cable; currently loc.(x,y,z) = 0.0 for all channels

	frequency response; currently :resp is an all-pass placeholder

Nodal SEG Y Support Status

See SEG Y Support.

Working with NodalData objects

NodalData objects have one major structural difference from SeisData objects:
the usual data field :x is a set of views to an Array{Float32, 2} (equivalent
to a Matrix{Float32}) stored in field :data. This allows the user to apply
two-dimensional data processing operations directly to the data matrix.

NodalData Assumptions

	S.t[i] is the same for all i.

	S.fs[i] is constant for all i.

	length(S.x[i]) is constant for all i.

Other Differences from SeisData objects

	Operations like push! and append! must regenerate :data using hcat(), and therefore consume a lot of memory.

	Attempting to push! or append! channels of unequal length throws an error.

	Attempting to push! or append! same-length channels with different :t or :fs won’t synchronize them! You will instead have columns in :data that aren’t time-aligned.

	Irregularly-sampled data (:fs = 0.0) are not supported.

Types

See docstrings for field names and descriptions.

	
NodalLoc()

	

Nodal location. Currently only stores position along optical cable.

	
NodalData()

	

Structure to hold nodal array data. Similar to a SeisData object.

	
NodalChannel()

	

A single channel of data from a nodal array. Similar to a SeisChannel object.

Quake

The Quake submodule was introduced in SeisIO v0.3.0 to isolate handling of discrete earthquake events from handling of continuous geophysical data. While the channel data are similar, fully describing an earthquake event requires many additional Types (objects) and more information (fields) in channel descriptors.

Types

See Type help text for field descriptions and SeisIO behavior.

	
EQMag()

	

Earthquake magnitude object.

	
EQLoc()

	

Structure to hold computed earthquake location data.

	
EventChannel()

	

A single channel of trace data (digital seismograms) associated with a
discrete event (earthquake).

	
EventTraceData()

	

A custom structure designed to describe trace data (digital seismograms)
associated with a discrete event (earthquake).

	
PhaseCat()

	

A seismic phase catalog is a dictionary with phase names for keys (e.g. “pP”, “PKP”)
and SeisPha objects for values.

	
SeisEvent()

	

A compound Type comprising a SeisHdr (event header), SeisSrc (source process),
and EventTraceData (digital seismograms.)

	
SeisHdr()

	

Earthquake event header object.

	
SeisPha()

	

A description of a seismic phase measured on a data channel.

	
SeisSrc()

	

Seismic source process description.

	
SourceTime()

	

QuakeML-compliant seismic source-time parameterization.

Web Queries

Keyword descriptions for web queries appear at the end of this section.

	
FDSNevq(ot)

	

Event header query. Multi-server query for the event(s) with origin time(s) closest to ot. Returns a tuple consisting of an Array{SeisHdr,1} and an Array{SeisSrc,1}, so that the i`th entry of each array describes the header and source process of event `i.

Keywords: evw, mag, nev, rad, reg, src, to, v

Notes

	Specify ot as a string formatted YYYY-MM-DDThh:mm:ss in UTC (e.g. “2001-02-08T18:54:32”).

	Incomplete string queries are read to the nearest fully-specified time constraint; thus, FDSNevq(“2001-02-08”) returns the nearest event to 2001-02-08T00:00:00.

	If no event is found in the specified search window, FDSNevq exits with an error.

	For FDSNevq, keyword src can be a comma-delineated list of sources, provided each has a value in ?seis_www; for example, src="IRIS, INGV, NCEDC" is valid.

	
FDSNevt(ot::String, chans::String)

	

Get header and trace data for the event closest to origin time ot on channels
chans. Returns a SeisEvent structure.

Keywords: evw, fmt, len, mag, model, nd, opts, pha, rad, reg, src, to, v, w

Notes

	Specify ot as a string formatted YYYY-MM-DDThh:mm:ss in UTC (e.g. “2001-02-08T18:54:32”).

	Incomplete string queries are read to the nearest fully-specified time constraint; thus, FDSNevq(“2001-02-08”) returns the nearest event to 2001-02-08T00:00:00.

	If no event is found in the specified search window, FDSNevt exits with an error.

	Unlike FDSNevq, number of events cannot be specified and src must be a single source String in ?seis_www.

	
get_pha!(S::Data[, keywords])

	

Command-line interface to IRIS online travel time calculator, which calls TauP. Returns a matrix of strings.

Keywords: pha, model, to, v

References

	TauP manual: http://www.seis.sc.edu/downloads/TauP/taup.pdf

	Crotwell, H. P., Owens, T. J., & Ritsema, J. (1999). The TauP Toolkit: Flexible seismic travel-time and ray-path utilities, SRL 70(2), 154-160.

Web Query Keywords

	KW

	Default

	T 1

	Meaning

	evw

	[600.0, 600.0]

	A{F,1}

	search window in seconds 2

	fmt

	“miniseed”

	S

	request data format

	len

	120.0

	I

	desired trace length [s]

	mag

	[6.0, 9.9]

	A{F,1}

	magnitude range for queries

	model

	“iasp91”

	S

	Earth velocity model for phase times

	nd

	1

	I

	number of days per subrequest

	nev

	0

	I

	number of events returned per query 3

	opts

	“”

	S

	user-specified options 4

	pha

	“P”

	S

	phases to get 5

	rad

	[]

	A{F,1}

	radial search region 6

	reg

	[]

	A{F,1}

	rectangular search region 7

	src

	“IRIS”

	S

	data source; type ?seis_www for list

	to

	30

	I

	read timeout for web requests [s]

	v

	0

	I

	verbosity

	w

	false

	B

	write requests to disk? 8

Table Footnotes

	1

	Types: A = Array, B = Boolean, C = Char, DT = DateTime, F = Float, I = Integer, S = String, U8 = Unsigned 8-bit integer (UInt8)

	2

	search range is always ot-|evw[1]| ≤ t ≤ ot+|evw[2]|

	3

	nev=0 returns all events in the query

	4

	String is passed as-is, e.g. “szsrecs=true&repo=realtime” for FDSN. String should not begin with an ampersand.

	5

	Comma-separated String, like “P, pP”; use “ttall” for all phases

	6

	Specify region [center_lat, center_lon, min_radius, max_radius, dep_min, dep_max], with lat, lon, and radius in decimal degrees (°) and depth in km with + = down. Depths are only used for earthquake searches.

	7

	Specify region [lat_min, lat_max, lon_min, lon_max, dep_min, dep_max], with lat, lon in decimal degrees (°) and depth in km with + = down. Depths are only used for earthquake searches.

	8

	If w=true, a file name is automatically generated from the request parameters, in addition to parsing data to a SeisData structure. Files are created from the raw download even if data processing fails, in contrast to get_data(… wsac=true).

Example

Get seismic and strainmeter records for the P-wave of the Tohoku-Oki great earthquake on two borehole stations and write to native SeisData format:

S = FDSNevt("201103110547", "PB.B004..EH?,PB.B004..BS?,PB.B001..BS?,PB.B001..EH?")
wseis("201103110547_evt.seis", S)

Utility Functions

	
distaz!(Ev::SeisEvent)

	

Compute distance, azimuth, and backazimuth by the Haversine formula.
Overwrites Ev.data.dist, Ev.data.az, and Ev.data.baz.

	
gcdist([lat_src, lon_src,]rec)

	

Compute great circle distance, azimuth, and backazimuth from a single source
with coordinates [s_lat, s_lon] to receivers rec with coordinates
[r_lat r_lon] in each row.

	
show_phases(P::PhaseCat)

	

Formatted display of seismic phases in dictionary P.

	
fill_sac_evh!(Ev::SeisEvent, fname[; k=N])

	

Fill (overwrite) values in Ev.hdr with data from SAC file fname. Keyword
k=i specifies the reference channel i from which the absolute origin time
Ev.hdr.ot is set. Potentially affects header fields :id, :loc (subfields
.lat, .lon, .dep only), and :ot.

Reading Earthquake Data Files

	
S = read_quake(fmt::String, filename [, KWs])

	

Read data in file fmt from file filename into memory.

fmt

Case-sensitive string describing the file format. See below.

KWs

Keyword arguments; see also SeisIO standard KWs or type ?SeisIO.KW.

Standard keywords: full, nx_add, nx_new, v

Other keywords: See below.

Supported File Formats

	File Format

	String

	Notes

	PC-SUDS

	suds

	

	QuakeML

	qml, quakeml

	only reads first event from file

	UW

	uw

	

Supported Keywords

	KW

	Used By

	Type

	Default

	Meaning

	full

	suds, uw

	Bool

	false

	read full header into :misc?

	v

	all

	Integer

	0

	verbosity

QuakeML

	
read_qml(fpat::String)

	

Read QuakeML files matching string pattern fpat. Returns a tuple containing an array of SeisHdr objects H and an array of SeisSrc objects R. Each pair (H[i], R[i]) describes the preferred location (origin, SeisHdr) and event source (focal mechanism or moment tensor, SeisSrc) of event i.

If multiple focal mechanisms, locations, or magnitudes are present in a single Event element of the XML file(s), the following rules are used to select one of each per event:

FocalMechanism

1. preferredFocalMechanismID if present

2. Solution with best-fitting moment tensor

3. First FocalMechanism element

Magnitude

1. preferredMagnitudeID if present

2. Magnitude whose ID matches MomentTensor/derivedOriginID

3. Last moment magnitude (lowercase scale name begins with “mw”)

4. First Magnitude element

Origin

1. preferredOriginID if present

2. derivedOriginID from the chosen MomentTensor element

3. First Origin element

Non-essential QuakeML data are saved to misc in each SeisHdr or SeisSrc object as appropriate.

	
write_qml(fname, Ev::SeisEvent; v::Integer=0)

	

See writing.

SeisHDF

This submodule contains dedicated support for seismic subformats of the HDF5 file format.

Additional Functions

	
asdf_waux(fname, path, X)

	

Write X to AuxiliaryData/path in file fname. If an object already exists at
AuxiliaryData/path, it will be deleted and overwritten with X.

	
asdf_rqml(fpat)

	

Read QuakeXML (qml) from ASDF file(s) matching file string pattern fpat. Returns:

	H, Array{SeisHdr,1}

	R, Array{SeisSrc,1}

	
asdf_wqml(fname, H, R[, keywords])

	

	
asdf_wqml(fname, EV[, keywords])

	

Write to ASDF “QuakeML ” group in file fname. In the above function calls, H can be a SeisHdr or Array{SeisHdr, 1}; R can be a SeisSource or Array{SeisSource, 1}; EV can be a SeisEvent or Array{SeisEvent, 1}.

Supported Keywords

	KW

	Type

	Default

	Meaning

	ovr

	Bool

	false

	Overwrite data in existing traces?

	v

	Integer

	0

	verbosity

	
read_asdf_evt(filestr, event_id[, keywords])

	

	
read_asdf_evt(filestr[, keywords])

	

Read data in seismic HDF5 format with ids matching event_id from files
matching pattern filestr. Returns an array of SeisEvent structures. With only one input argument, all event IDs are read.

Keywords:

	msr: (Bool) read full (MultiStageResp) instrument response?

	v: (Integer) verbosity level

	
scan_hdf5(h5file)

	

	
scan_hdf5(hdf, level="trace")

	

Scan HDF5 archive h5file and return station names with waveform data contained therein as a list of strings formatted “nn.sssss” (network.station).

Set level=”trace” to return channel names with waveform data as a list of strings formatted “nn.sssss.ll.ccc” (network.station.location.channel).

Appendices

Time Syntax

Functions that allow time specification use two reserved keywords or arguments to track time:

	s: Start (begin) time

	t: Termination (end) time

Specify each as a DateTime, Real, or String.

	Real numbers are interpreted as seconds. Special behavior is invoked when both s and t are of Type Real.

	DateTime values should follow Julia documentation [https://docs.julialang.org/en/v1/stdlib/Dates/]

	Strings have the expected format spec YYYY-MM-DDThh:mm:ss.ssssss

	Fractional second is optional and accepts up to 6 decimal places (μs)

	Incomplete time Strings treat missing fields as 0.

	Example: s=”2016-03-23T11:17:00.333”

It isn’t necessary to choose values so that s ≤ t. The two values are always sorted, so that t < s doesn’t error.

Time Types and Behavior

	typeof(s)

	typeof(t)

	Behavior

	DateTime

	DateTime

	convert to String, then sort

	DateTime

	Real

	add t seconds to s, convert to String, then sort

	DateTime

	String

	convert s to String, then sort

	Real

	DateTime

	add s seconds to t, convert to String, then sort

	Real

	Real

	treat as relative (see below), convert to String, sort

	Real

	String

	add s seconds to t, convert to String, then sort

	String

	DateTime

	convert t to String, then sort

	String

	Real

	add t seconds to s, convert to String, then sort

	String

	String

	sort

Special Behavior with two Real arguments

If s and t are both Real numbers, they’re treated as seconds measured relative to the start of the current minute. This convention may seem unusual, but it greatly simplifies web requests; for example, specifying s=-1200.0, t=0.0 is a convenient shorthand for “the last 20 minutes of data”.

Data Requests Syntax

Channel ID Syntax

NN.SSSSS.LL.CC (net.sta.loc.cha, separated by periods) is the expected syntax for all web functions. The maximum field width in characters corresponds to the length of each field (e.g. 2 for network). Fields can’t contain whitespace.

NN.SSSSS.LL.CC.T (net.sta.loc.cha.tflag) is allowed in SeedLink. T is a single-character data type flag and must be one of DECOTL: Data, Event, Calibration, blOckette, Timing, or Logs. Calibration, timing, and logs are not in the scope of SeisIO and may crash SeedLink sessions.

The table below specifies valid types and expected syntax for channel lists.

	Type

	Description

	Example

	String

	Comma-delineated list of IDs

	“PB.B004.01.BS1, PB.B002.01.BS1”

	Array{String,1}

	String array, one ID string per entry

	[“PB.B004.01.BS1”, “PB.B002.01.BS1”]

	Array{String,2}

	String array, one set of IDs per row

	[“PB” “B004” “01” “BS1”;

	
	
	“PB” “B002” “01” “BS1”]

The expected component order is always network, station, location, channel; thus, “UW.TDH..EHZ” is OK, but “UW.TDH.EHZ” fails.

	
chanspec()

	

Type ?chanspec in Julia to print the above info. to stdout.

Wildcards and Blanks

Allowed wildcards are client-specific.

	The LOC field can be left blank in any client: "UW.ELK..EHZ" and ["UW" "ELK" "" "EHZ"] are all valid. Blank LOC fields are set to -- in IRIS, * in FDSN, and ?? in SeedLink.

	? acts as a single-character wildcard in FDSN & SeedLink. Thus, CC.VALT..??? is valid.

	* acts as a multi-character wildcard in FDSN. Thus, CC.VALT..* and CC.VALT..??? behave identically in FDSN.

	Partial specifiers are OK, but a network and station are always required: "UW.EL?" is OK, ".ELK.." fails.

Channel Configuration Files

One entry per line, ASCII text, format NN.SSSSS.LL.CCC.D. Due to client-specific wildcard rules, the most versatile configuration files are those that specify each channel most completely:

This only works with SeedLink
GE.ISP..BH?.D
NL.HGN
MN.AQU..BH?
MN.AQU..HH?
UW.KMO
CC.VALT..BH?.D

This works with FDSN and SeedLink, but not IRIS
GE.ISP..BH?
NL.HGN
MN.AQU..BH?
MN.AQU..HH?
UW.KMO
CC.VALT..BH?

This works with all three:
GE.ISP..BHZ
GE.ISP..BHN
GE.ISP..BHE
MN.AQU..BHZ
MN.AQU..BHN
MN.AQU..BHE
MN.AQU..HHZ
MN.AQU..HHN
MN.AQU..HHE
UW.KMO..EHZ
CC.VALT..BHZ
CC.VALT..BHN
CC.VALT..BHE

Server List

	String

	Source

	BGR

	http://eida.bgr.de

	EMSC

	http://www.seismicportal.eu

	ETH

	http://eida.ethz.ch

	GEONET

	http://service.geonet.org.nz

	GFZ

	http://geofon.gfz-potsdam.de

	ICGC

	http://ws.icgc.cat

	INGV

	http://webservices.ingv.it

	IPGP

	http://eida.ipgp.fr

	IRIS

	http://service.iris.edu

	ISC

	http://isc-mirror.iris.washington.edu

	KOERI

	http://eida.koeri.boun.edu.tr

	LMU

	http://erde.geophysik.uni-muenchen.de

	NCEDC

	http://service.ncedc.org

	NIEP

	http://eida-sc3.infp.ro

	NOA

	http://eida.gein.noa.gr

	ORFEUS

	http://www.orfeus-eu.org

	RESIF

	http://ws.resif.fr

	SCEDC

	http://service.scedc.caltech.edu

	TEXNET

	http://rtserve.beg.utexas.edu

	USGS

	http://earthquake.usgs.gov

	USP

	http://sismo.iag.usp.br

SeisIO Standard Keywords

SeisIO.KW is a memory-resident structure of default values for common keywords
used by package functions. KW has one substructure, SL, with keywords specific
to SeedLink. These defaults can be modified, e.g., SeisIO.KW.nev=2 changes the
default for nev to 2.

	KW

	Default

	T 1

	Meaning

	comp

	0x00

	U8

	compress data on write? 2

	fmt

	“miniseed”

	S

	request data format 3

	mag

	[6.0, 9.9]

	A{F,1}

	magnitude range for queries

	n_zip

	100000

	I

	compress if length(:x) > n_zip

	nd

	1

	I

	number of days per subrequest

	nev

	1

	I

	number of events returned per query

	nx_add

	360000

	I

	length increase of undersized data array

	nx_new

	8640000

	I

	number of samples for a new channel

	opts

	“”

	S

	user-specified options 4

	prune

	true

	B

	call prune! after get_data?

	rad

	[]

	A{F,1}

	radial search region 5

	reg

	[]

	A{F,1}

	rectangular search region 6

	si

	true

	B

	autofill station info on data req? 7

	src

	“IRIS”

	S

	data source; type ?seis_www for list

	to

	30

	I

	read timeout for web requests (s)

	v

	0

	I

	verbosity

	w

	false

	B

	write requests to disk? 8

	y

	false

	B

	sync data after web request?

Table Footnotes

	1

	Types: A = Array, B = Boolean, C = Char, DT = DateTime, F = Float, I = Integer, S = String, U8 = Unsigned 8-bit integer (UInt8)

	2

	If KW.comp == 0x00, never compress data; if KW.comp == 0x01, only compress channel i if length(S.x[i]) > KW.n_zip; if comp == 0x02, always compress data.

	3

	Strings have the same names and spellings as file formats in read_data. Note that “sac” in a web request is aliased to “sacbl”, i.e., binary little-endian SAC, to match the native endianness of the Julia language.

	4

	String is passed as-is, e.g. “szsrecs=true&repo=realtime” for FDSN. String should not begin with an ampersand.

	5

	Specify region [center_lat, center_lon, min_radius, max_radius, dep_min, dep_max], with lat, lon, and radius in decimal degrees (°) and depth in km with + = down. Depths are only used for earthquake searches.

	6

	Specify region [lat_min, lat_max, lon_min, lon_max, dep_min, dep_max], with lat, lon in decimal degrees (°) and depth in km with + = down. Depths are only used for earthquake searches.

	7

	FDSNWS timeseries only.

	8

	If w=true, a file name is automatically generated from the request parameters, in addition to parsing data to a SeisData structure. Files are created from the raw download even if data processing fails, in contrast to get_data(… wsac=true).

Utility Functions

This appendix covers utility functions that belong in no other category.

	
d2u(DT::DateTime)

	

Aliased to Dates.datetime2unix.

	
fctoresp(fc, c)

	

Generate a generic PZResp object for a geophone with critical frequency fc and damping constant c. If no damping constant is specified, assumes c = 1/sqrt(2).

	
find_regex(path::String, r::Regex)

	

OS-agnostic equivalent to Linux find. First argument is a path string, second is a Regex. File strings are postprocessed using Julia’s native PCRE Regex engine. By design, find_regex only returns file names.

	
getbandcode(fs, fc=FC)

	

Get SEED-compliant one-character band code corresponding to instrument sample rate fs and corner frequency FC. If unset, FC is assumed to be 1 Hz.

	
get_file_ver(fname::String)

	

Get the version of a SeisIO native format file.

	
get_seis_channels(S::GphysData)

	

Get numeric indices of channels in S whose instrument codes indicate seismic data.

	
guess(fname::String)

	

Attempt to guess data file format and endianness using known binary file markers.

	
inst_code(C::GphysChannel)

	

	
inst_code(S::GphysData, i::Int64)

	

	
inst_code(S::GphysData)

	

Get instrument codes.

	
ls(s::String)

	

Similar functionality to Bash ls with OS-agnostic output. Accepts wildcards in paths and file names.
* Always returns the full path and file name.
* Partial file name wildcards (e.g. “ls(data/2006*.sac)) invoke glob.
* Path wildcards (e.g. ls(/data/*/*.sac)) invoke find_regex to circumvent glob limitations.
* Passing ony “*” as a filename (e.g. “ls(/home/*)) invokes find_regex to recursively search subdirectories, as in the Bash shell.

	
ls()

	

Return full path and file name of files in current working directory.

	
j2md(y, j)

	

Convert Julian day j of year y to month, day.

	
md2j(y, m, d)

	

Convert month m, day d of year y to Julian day j.

Remove unwanted characters from S.

	
parsetimewin(s, t)

	

Convert times s and t to strings \(\alpha, \omega\) sorted \(\alpha < \omega\). s and t can be real numbers, DateTime objects, or ASCII strings. Expected string format is “yyyy-mm-ddTHH:MM:SS.nnn”, e.g. 2016-03-23T11:17:00.333.

	
resp_a0!(R::InstrumentResponse)

	

	
resp_a0!(S::GphysData)

	

Update sensitivity :a0 of PZResp/PZResp64 responses.

	
resptofc(R)

	

Attempt to guess critical frequency from poles and zeros of a PZResp/PZResp64.

	
set_file_ver(fname::String)

	

Sets the SeisIO file version of file fname.

	
u2d(x)

	

Alias to Dates.unix2datetime.

	
validate_units(S::GphysData)

	

Validate strings in :units field to ensure UCUM compliance.

	
vucum(str::String)

	

Check whether str contains valid UCUM units.
.. _seisio_file_format:

SeisIO Native Format

Invoking the command wseis writes SeisIO structures to a native data format
in little-endian byte order. This page documents the low-level file format.
Abbreviations used:

	Type

	Meaning

	C

	Fortran 77

	Char

	Unicode character

	wchar

	CHARACTER*4

	Float32

	32-bit float

	float

	REAL

	Float64

	64-bit float

	double

	REAL*8

	Int8

	signed 8-bit int

	short

	INTEGER

	Int16

	signed 16-bit int

	int

	INTEGER*2

	Int32

	signed 32-bit int

	long

	INTEGER*4

	Int64

	signed 64-bit integer

	long long

	INTEGER*8

	UInt8

	unsigned 8-bit int

	unsigned short

	CHARACTER

	UInt16

	unsigned 16-bit int

	unsigned

	

	UInt32

	unsigned 32-bit int

	unsigned long

	

	UInt64

	unsigned 64-bit int

	unsigned long long

	

Special instructions:

Parentheses, “()”, denote a custom object Type.

“{ (condition)” denotes the start of a loop; (condition) is the control flow.

“}” denotes the end of a loop.

Note that String in Julia has no exact C equivalence. SeisIO writes each String
in two parts: an Int64 (String length in bytes) followed by the String contents
(as bytes, equivalent to UInt8). Unlike C/Fortran, there are no issues with
strings that contain the null character (0x00 or '\x0').

SeisIO File

	Var

	Meaning

	T

	N

	
	“SEISIO”

	UInt8

	6

	V

	SeisIO file format version

	Float32

	1

	J

	# of SeisIO objects in file

	UInt32

	1

	C

	SeisIO object codes for each object

	UInt32

	J

	B

	Byte indices for each object

	UInt64

	J

	{

	
	
	for i = 1:J

	
	(Objects)

	variable

	J

	}

	
	
	

	ID

	ID hashes

	UInt64

	variable

	TS

	Start times

	Int64

	variable

	TE

	End times

	Int64

	variable

	P

	Parent object index in C and B

	variable

	

	bID

	Byte offset of ID array

	Int64

	1

	bTS

	Byte offset of TS array

	Int64

	1

	bTE

	Byte offset of TE array

	Int64

	1

	bP

	Byte offset of P array

	Int64

	1

ID, TS, and TE are the ID, data start time, and data end time of each channel
in each object. P is the index of the parent object in C and B. TS and TE are
measured from Unix epoch time (1970-01-01T00:00:00Z) in integer microseconds.

Intent: when seeking data from channel i between times s and t,
if hash(i) matches ID[j] and the time windows overlap, retrieve index
k = P[j] from NP, seek to byte offset B[k], and read an object of
type C[k] from file.

If an archive contains no data objects, ID, TS, TE, and P are empty;
equivalently, bID == bTS.

Simple Object Types

Fields of these objects are written in one of three ways: as “plain data” types,
such as UInt8 or Float64; as arrays; or as strings.

In a simple object, each array is stored as follows:
1. Int64 number of dimensions (e.g. 2)
2. Int64 array of dimensions themselves (e.g. 2, 2)
3. Array values (e.g. 0.08250153, 0.023121119, 0.6299772, 0.79595184)

EQLoc

	Var

	Type

	N

	Meaning

	lat

	Float64

	1

	latitude

	lon

	Float64

	1

	longitude

	dep

	Float64

	1

	depth

	dx

	Float64

	1

	x-error

	dy

	Float64

	1

	y-error

	dz

	Float64

	1

	z-error

	dt

	Float64

	1

	t-error (error in origin time)

	se

	Float64

	1

	standard error

	rms

	Float64

	1

	rms pick error

	gap

	Float64

	1

	azimuthal gap

	dmin

	Float64

	1

	minimum source-receiver distance in location

	dmax

	Float64

	1

	maximum source-receiver distance in location

	nst

	Int64

	1

	number of stations used to locate earthquake

	flags

	UInt8

	1

	one-bit flags for special location properties

	Ld

	Int64

	1

	length of “datum” string in bytes

	datum

	UInt8

	Ld

	Datum string

	Lt

	Int64

	1

	length of “typ” (event type) string in bytes

	typ

	UInt8

	Lt

	earthquake type string

	Li

	Int64

	1

	length of “sig” (error significance) string in bytes

	sig

	UInt8

	Li

	earthquake location error significance string

	Lr

	Int64

	1

	length of “src” (data source) string in bytes

	src

	UInt8

	Lr

	data source string

flag meanings: (0x01 = true, 0x00 = false)

1. x fixed?

2. y fixed?

3. z fixed?

4. t fixed?

In Julia, get the value of flag[n] with >>(<<(flags, n-1), 7).

EQMag

	Var

	Type

	N

	Meaning

	val

	Float32

	1

	magnitude value

	gap

	Float64

	1

	largest azimuthal gap between stations in magnitude

	nst

	Int64

	1

	number of stations used in magnitude computation

	Lsc

	Int64

	1

	length of magnitude scale string

	msc

	UInt8

	Lsc

	magnitude scale string

	Lr

	Int64

	1

	length of data source string

	src

	UInt8

	Lr

	data source string

SeisPha

	Var

	Type

	N

	Meaning

	F

	Float64

	8

	amplitude, distance, incidence angle, residual,

	
	
	
	ray parameter, takeoff angle, travel time, uncertainty

	C

	Char

	2

	polarity, quality

SourceTime

	Var

	Type

	N

	Meaning

	Ld

	Int64

	1

	size of descriptive string in bytes

	desc

	UInt8

	1

	descriptive string

	F

	Float64

	3

	duration, rise time, decay time

StringVec

A vector of variable-length strings; its exact Type in Julia is Array{String,1}.

StringVec

	Var

	Type

	N

	Meaning

	ee

	UInt8

	1

	is this string vector empty? 9

	L

	Int64

	1

	number of strings to read

	{

	
	
	i = 1:L

	nb

	Int64

	1

	length of string in bytes

	str

	UInt8

	nb

	string

	}

	
	
	

	9

	If ee == 0x00, then no values are stored for L, nb, or str.

Location Types

GenLoc

	Var

	Type

	N

	Meaning

	Ld

	Int64

	1

	length of datum string in bytes

	datum

	UInt8

	Ld

	datum string

	Ll

	Int64

	1

	length of location vector in bytes

	loc

	Float64

	Ll

	location vector

GeoLoc

	Var

	Type

	N

	Meaning

	Ld

	Int64

	1

	length of datum string in bytes

	datum

	UInt8

	Ld

	datum string

	F

	Float64

	6

	latitude, longitude, elevation,

	
	
	
	depth, azimuth, incidence

UTMLoc

	Var

	Type

	N

	Meaning

	Ld

	Int64

	1

	length of datum string in bytes

	datum

	UInt8

	N

	datum string

	zone

	Int8

	1

	UTM zone number

	hemi

	Char

	1

	hemisphere

	E

	UInt64

	1

	Easting

	N

	UInt64

	1

	Northing

	F

	Float64

	4

	elevation, depth, azimuth, incidence

XYLoc

	Var

	Type

	N

	Meaning

	Ld

	Int64

	1

	Length of datum string in bytes

	datum

	UInt8

	Ld

	datum string

	F

	Float64

	8

	x, y, z, azimuth, incidence, origin x, origin y, origin z

Response Types

GenResp

	Var

	Type

	N

	Meaning

	Ld

	Int64

	1

	length of descriptive string in bytes

	desc

	UInt8

	Ld

	descriptive string

	nr

	Int64

	1

	Number of rows in complex response matrix

	nc

	Int64

	1

	Number of columns in complex response matrix

	resp

	Complex{Float64,2}

	nr*nc

	complex response matrix

PZResp

	Var

	Type

	N

	Meaning

	c

	Float32

	1

	damping constant

	np

	Int64

	1

	number of complex poles

	p

	Complex{Float32,1}

	np

	complex poles vector

	nz

	Int64

	1

	number of complex zeros

	z

	Complex{Float32,1}

	nz

	complex zeros vector

PZResp64 is identical to PZResp with Float64 values for c, p, z, rather than Float32.

The Misc Dictionary

Most compound objects below contain a dictionary (Dict{String,Any}) for
non-essential information in a field named :misc. The tables below describe
how this field is written to disk.

Misc

	Var

	Type

	N

	Meaning

	N

	Int64

	1

	number of items in dictionary 10

	K

	(StringVec)

	1

	dictionary keys

	{

	
	
	for i = 1:N

	c

	UInt8

	1

	Type code of object i

	o

	variable

	1

	object i

	}

	
	
	

	10

	If N == 0, then N is the only value present.

Dictionary Contents

These subtables describe how to read the possible data types in a Misc dictionary.

String Array (c == 0x81)

	Var

	Type

	N

	Meaning

	A

	(StringVec)

	1

	string vector

Other Array (c == 0x80 or c > 0x81)

	Var

	Type

	N

	Meaning

	nd

	Int64

	1

	number of dimensions in array

	dims

	Int64

	nd

	array dimensions

	arr

	varies

	prod(nd)

	array

String (c == 0x01)

	Var

	Type

	N

	Meaning

	L

	Int64

	1

	size of string in bytes

	str

	UInt8

	1

	string

Bits Type (c == 0x00 or 0x01 < c < 0x7f)

Read a single value whose Type corresponds to the UInt8 Type code.

Compound Object Types

Each of these objects contains at least one of the above simple object types.

PhaseCat

	Var

	Type

	N

	Meaning

	N

	Int64

	1

	number of SeisPha objects to read 11

	K

	(StringVec)

	1

	dictionary keys

	pha

	(SeisPha)

	N

	seismic phases

	11

	If N == 0, then N is the only value present.

EventChannel

A single channel of data related to a seismic event

	Var

	Type

	N

	Meaning

	Ni

	Int64

	1

	size of id string in bytes

	id

	UInt8

	Ni

	id string

	Nn

	Int64

	1

	size of name string in bytes

	name

	UInt8

	Nn

	name string

	Lt

	UInt8

	1

	location Type code

	loc

	(Loc Type)

	1

	instrument position

	fs

	Float64

	1

	sampling frequency in Hz

	gain

	Float64

	1

	scalar gain

	Rt

	UInt8

	1

	response Type code

	resp

	(Resp Type)

	1

	instrument response

	Nu

	Int64

	1

	size of units string in bytes

	units

	UInt8

	Nu

	units string

	az

	Float64

	1

	azimuth

	baz

	Float64

	1

	backazimuth

	dist

	Float64

	1

	source-receiver distance

	pha

	(PhaseCat)

	1

	phase catalog

	Nr

	Int64

	1

	size of data source string in bytes

	src

	UInt8

	Nr

	data source string

	misc

	(Misc)

	1

	dictionary for non-essential information

	notes

	(StringVec)

	1

	notes and automated logging

	Nt

	Int64

	1

	length of time gaps matrix

	T

	Int64

	2Nt

	time gaps matrix

	Xc

	UInt8

	1

	Type code of data vector

	Nx

	Int64

	1

	number of samples in data vector

	X

	variable

	NX

	data vector

SeisChannel

A single channel of univariate geophysical data

	Var

	Type

	N

	Meaning

	Ni

	Int64

	1

	size of id string in bytes

	id

	UInt8

	Ni

	id string

	Nn

	Int64

	1

	size of name string in bytes

	name

	UInt8

	Nn

	name string

	Lt

	UInt8

	1

	location Type code

	loc

	(Loc Type)

	1

	instrument position

	fs

	Float64

	1

	sampling frequency in Hz

	gain

	Float64

	1

	scalar gain

	Rt

	UInt8

	1

	response Type code

	resp

	(Resp Type)

	1

	instrument response

	Nu

	Int64

	1

	size of units string in bytes

	units

	UInt8

	Nu

	units string

	Nr

	Int64

	1

	size of data source string in bytes

	src

	UInt8

	Nr

	data source string

	misc

	(Misc)

	1

	dictionary for non-essential information

	notes

	(StringVec)

	1

	notes and automated logging

	Nt

	Int64

	1

	length of time gaps matrix

	T

	Int64

	2Nt

	time gaps matrix

	Xc

	UInt8

	1

	Type code of data vector

	Nx

	Int64

	1

	number of samples in data vector

	X

	variable

	NX

	data vector

EventTraceData

A multichannel record of time-series data related to a seismic event.

	Var

	Type

	N

	Meaning

	N

	Int64

	1

	number of data channels

	Lc

	UInt8

	N

	location Type codes for each data channel

	Rc

	UInt8

	N

	response Type codes for each data channel

	Xc

	UInt8

	N

	data Type codes for each data channel

	cmp

	UInt8

	1

	are data compressed? (0x01 = yes)

	Nt

	Int64

	N

	number of rows in time gaps matrix for each channel

	Nx

	Int64

	N

	length of data vector for each channel 12

	id

	(StringVec)

	1

	channel ids

	name

	(StringVec)

	1

	channel names

	loc

	(Loc Type)

	N

	instrument positions

	fs

	Float64

	N

	sampling frequencies of each channel in Hz

	gain

	Float64

	N

	scalar gains of each channel

	resp

	(Resp Type)

	N

	instrument responses

	units

	(StringVec)

	1

	units of each channel’s data

	az

	Float64

	N

	event azimuth

	baz

	Float64

	N

	backazimuths to event

	dist

	Float64

	N

	source-receiver distances

	pha

	(PhaseCat)

	N

	phase catalogs for each channel

	src

	(StringVec)

	1

	data source strings for each channel

	misc

	(Misc)

	N

	dictionaries of non-essential information for each channel

	notes

	(StringVec)

	N

	notes and automated logging for each channel

	{

	
	
	for i = 1:N

	T

	Int64

	2Nt[i]

	Matrix of time gaps for channel i

	}

	
	
	

	{

	
	
	for i = 1:N

	X

	Xc[i]

	Nx[i]

	Data vector i 13

	}

	
	
	

	12

	If cmp == 0x01, each value in Nx is the number of bytes of compressed data to read; otherwise, this is the number of samples in each channel.

	13

	If cmp == 0x01, read Nx[i] samples of type UInt8 and pass through lz4 decompression to generate data vector i; else read Nx[i] samples of the type corresponding to code Xc[i].

SeisData

A record containing multiple channels of univariate geophysical data.

	Var

	Type

	N

	Meaning

	N

	Int64

	1

	number of data channels

	Lc

	UInt8

	N

	location Type codes for each data channel

	Rc

	UInt8

	N

	response Type codes for each data channel

	Xc

	UInt8

	N

	data Type codes for each data channel

	cmp

	UInt8

	1

	are data compressed? (0x01 = yes)

	Nt

	Int64

	N

	number of rows in time gaps matrix for each channel

	Nx

	Int64

	N

	length of data vector for each channel 14

	id

	(StringVec)

	1

	channel ids

	name

	(StringVec)

	1

	channel names

	loc

	(Loc Type)

	N

	instrument positions

	fs

	Float64

	N

	sampling frequencies of each channel in Hz

	gain

	Float64

	N

	scalar gains of each channel

	resp

	(Resp Type)

	N

	instrument responses

	units

	(StringVec)

	1

	units of each channel’s data

	src

	(StringVec)

	1

	data source strings for each channel

	misc

	(Misc)

	N

	dictionaries of non-essential information for each channel

	notes

	(StringVec)

	N

	notes and automated logging for each channel

	{

	
	
	for i = 1:N

	T

	Int64

	2Nt[i]

	Matrix of time gaps for channel i

	}

	
	
	

	{

	
	
	for i = 1:N

	X

	Xc[i]

	Nx[i]

	Data vector i 15

	}

	
	
	

	14

	If cmp == 0x01, each value in Nx is the number of bytes of compressed data to read; otherwise, this is the number of samples in each channel.

	15

	If cmp == 0x01, read Nx[i] samples of type UInt8 and pass through lz4 decompression to generate data vector i; else read Nx[i] samples of the type corresponding to code Xc[i].

SeisHdr

	Var

	Type

	N

	Meaning

	Li

	Int64

	1

	length of event ID string

	id

	UInt8

	Li

	event ID string

	iv

	UInt8

	1

	intensity value

	Ls

	Int64

	1

	length of intensity scale string

	isc

	UInt8

	Ls

	intensity scale string

	loc

	(EQLoc)

	1

	earthquake location

	mag

	(EQMag)

	1

	earthquake magnitude

	misc

	(Misc)

	1

	dictionary containing non-essential information

	notes

	(StringVec)

	1

	notes and automated logging

	ot

	Int64

	1

	origin time 16

	Lr

	Int64

	1

	length of data source string

	src

	UInt8

	Lr

	data source string

	Lt

	Int64

	1

	length of event type string

	typ

	UInt8

	Lt

	event type string

	16

	Measured from Unix epoch time (1970-01-01T00:00:00Z) in integer microseconds

SeisSrc

	Var

	Type

	N

	Meaning

	Li

	Int64

	1

	length of source id string

	id

	UInt8

	Li

	id string

	Le

	Int64

	1

	length of event id string

	eid

	UInt8

	Le

	event id string

	m0

	Float64

	1

	scalar moment

	Lm

	Int64

	1

	length of moment tensor vector

	mt

	Float64

	Lm

	moment tensor vector

	Ld

	Int64

	1

	length of moment tensor misfit vector

	dm

	Float64

	Ld

	moment tensor misfit vector

	np

	Int64

	1

	number of polarities

	gap

	Float64

	1

	max. azimuthal gap

	pad

	Int64

	2

	dimensions of principal axes matrix

	pax

	Float64

	pad[1]*pad[2]

	principal axes matrix

	pld

	Int64

	2

	dimensions of nodal planes matrix

	planes

	Float64

	pld[1]*pld[2]

	nodal planes matrix

	Lr

	Int64

	1

	length of data source string

	src

	UInt8

	1

	data source string

	st

	(SourceTime)

	1

	source-time description

	misc

	(Misc)

	1

	Dictionary containing non-essential information

	notes

	(StringVec)

	1

	Notes and automated logging

SeisEvent

	Var

	Type

	N

	Meaning

	hdr

	(SeisHdr)

	1

	event header

	source

	(SeisSrc)

	1

	event source process

	data

	(EventTraceData)

	1

	event trace data

Data Type Codes

Each Type code is written to disk as a UInt8, with the important exception of
SeisIO custom object Type codes (which use UInt32).

Loc Type Codes

	UInt8

	Type

	0x00

	GenLoc

	0x01

	GeoLoc

	0x02

	UTMLoc

	0x03

	XYLoc

Resp Type Codes

	UInt8

	Type

	0x00

	GenResp

	0x01

	PZResp

	0x02

	PZResp64

Other Type Codes

Only the Types below are faithfully preserved in write/read of a :misc field
dictionary; other Types are not written to file and can cause wseis to
throw errors.

	Type

	UInt8

	Type

	UInt8

	Char

	0x00

	Array{Char,N}

	0x80

	String

	0x01

	Array{String,N}

	0x81

	UInt8

	0x10

	Array{UInt8,N}

	0x90

	UInt16

	0x11

	Array{UInt16,N}

	0x91

	UInt32

	0x12

	Array{UInt32,N}

	0x92

	UInt64

	0x13

	Array{UInt64,N}

	0x93

	UInt128

	0x14

	Array{UInt128,N}

	0x94

	Int8

	0x20

	Array{Int8,N}

	0xa0

	Int16

	0x21

	Array{Int16,N}

	0xa1

	Int32

	0x22

	Array{Int32,N}

	0xa2

	Int64

	0x23

	Array{Int64,N}

	0xa3

	Int128

	0x24

	Array{Int128,N}

	0xa4

	Float16

	0x30

	Array{Float16,N}

	0xb0

	Float32

	0x31

	Array{Float32,N}

	0xb1

	Float64

	0x32

	Array{Float64,N}

	0xb2

	Complex{UInt8}

	0x50

	Array{Complex{UInt8},N}

	0xd0

	Complex{UInt16}

	0x51

	Array{Complex{UInt16},N}

	0xd1

	Complex{UInt32}

	0x52

	Array{Complex{UInt32},N}

	0xd2

	Complex{UInt64}

	0x53

	Array{Complex{UInt64},N}

	0xd3

	Complex{UInt128}

	0x54

	Array{Complex{UInt128},N}

	0xd4

	Complex{Int8}

	0x60

	Array{Complex{Int8},N}

	0xe0

	Complex{Int16}

	0x61

	Array{Complex{Int16},N}

	0xe1

	Complex{Int32}

	0x62

	Array{Complex{Int32},N}

	0xe2

	Complex{Int64}

	0x63

	Array{Complex{Int64},N}

	0xe3

	Complex{Int128}

	0x64

	Array{Complex{Int128},N}

	0xe4

	Complex{Float16}

	0x70

	Array{Complex{Float16},N}

	0xf0

	Complex{Float32}

	0x71

	Array{Complex{Float32},N}

	0xf1

	Complex{Float64}

	0x72

	Array{Complex{Float64},N}

	0xf2

SeisIO Object Type codes

	UInt32 Code

	Object Type

	0x20474330

	EventChannel

	0x20474331

	SeisChannel

	0x20474430

	EventTraceData

	0x20474431

	SeisData

	0x20495030

	GenLoc

	0x20495031

	GeoLoc

	0x20495032

	UTMLoc

	0x20495033

	XYLoc

	0x20495230

	GenResp

	0x20495231

	PZResp64

	0x20495232

	PZResp

	0x20504330

	PhaseCat

	0x20534530

	SeisEvent

	0x20534830

	SeisHdr

	0x20535030

	SeisPha

	0x20535330

	SeisSrc

	0x20535430

	SourceTime

	0x45514c30

	EQLoc

	0x45514d30

	EQMag

File Format Version History

File format versions <0.50 are no longer supported; please email us if you
need to read in very old data.

	Version

	Date

	Change

	0.53

	2019-09-11

	removed :i, :o from CoeffResp

	
	
	added :i, :o to MultiStageResp

	0.52

	2019-09-03

	added CoeffResp, MultiStageResp

	0.51

	2019-08-01

	added :f0 to PZResp, PZResp64

	0.50

	2019-06-05

	all custom Types can now use write() directly

	
	
	rewrote how :misc is stored

	
	
	Type codes for :misc changed

	
	
	deprecated BigFloat/BigInt support in :misc

	
	
	:n is no longer stored as a UInt32

	
	
	:x compression no longer automatic

	
	
	:x compression changed from Blosc to lz4

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	asdf_rqml() (built-in function)

 	
 	asdf_waux() (built-in function)

 	asdf_wqml() (built-in function), [1]

C

 	
 	chanspec() (built-in function)

D

 	
 	d2u() (built-in function)

 	
 	dataless_support() (built-in function), [1]

E

 	
 	EQLoc() (built-in function)

 	EQMag() (built-in function)

 	
 	EventChannel() (built-in function)

 	EventTraceData() (built-in function)

F

 	
 	fctoresp() (built-in function)

 	FDSNevq() (built-in function)

 	FDSNevt() (built-in function)

 	
 	find_regex() (built-in function)

 	findchan() (built-in function), [1]

 	findid() (built-in function), [1]

G

 	
 	gcdist() (built-in function)

 	get_file_ver() (built-in function)

 	
 	get_seis_channels() (built-in function)

 	getbandcode() (built-in function)

 	guess() (built-in function)

H

 	
 	has_sta() (built-in function)

 	
 	has_stream() (built-in function)

I

 	
 	inst_code() (built-in function), [1], [2]

J

 	
 	j2md() (built-in function)

L

 	
 	ls() (built-in function), [1]

M

 	
 	md2j() (built-in function)

 	
 	mseed_support() (built-in function), [1]

N

 	
 	NodalChannel() (built-in function)

 	
 	NodalData() (built-in function)

 	NodalLoc() (built-in function)

P

 	
 	parsetimewin() (built-in function)

 	
 	PhaseCat() (built-in function)

R

 	
 	randPhaseCat() (built-in function)

 	randSeisChannel() (built-in function)

 	randSeisData() (built-in function), [1]

 	randSeisEvent() (built-in function), [1]

 	randSeisHdr() (built-in function)

 	randSeisSrc() (built-in function)

 	
 	read_asdf_evt() (built-in function), [1]

 	read_qml() (built-in function)

 	read_sxml() (built-in function)

 	resp_wont_read() (built-in function)

 	resptofc() (built-in function)

 	rseis() (built-in function)

S

 	
 	sachdr() (built-in function)

 	scan_hdf5() (built-in function), [1]

 	scan_seed() (built-in function)

 	seed_support() (built-in function), [1]

 	segyhdr() (built-in function)

 	SeisEvent() (built-in function)

 	SeisHdr() (built-in function)

 	SeisPha() (built-in function)

 	
 	SeisSrc() (built-in function)

 	set_file_ver() (built-in function)

 	show_phases() (built-in function)

 	show_processing() (built-in function), [1], [2]

 	show_src() (built-in function), [1], [2]

 	show_writes() (built-in function), [1], [2]

 	SL_info() (built-in function)

 	SourceTime() (built-in function)

 	suds_support() (built-in function)

T

 	
 	timestamp() (built-in function)

U

 	
 	u2d() (built-in function)

 	
 	uwpf() (built-in function)

V

 	
 	validate_units() (built-in function)

 	
 	vucum() (built-in function)

W

 	
 	write_hdf5() (built-in function)

 	write_qml() (built-in function), [1], [2]

 	write_sxml() (built-in function)

 	
 	writesac() (built-in function), [1]

 	writesacpz() (built-in function)

 	wseis() (built-in function), [1]

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 SeisIO

 		
 Introduction

 		
 Overview

 		
 Installation

 		
 Getting Started

 		
 Learning SeisIO

 		
 Updating

 		
 First Steps

 		
 Start Here

 		
 Operations on SeisData structures

 		
 Adding channels to a SeisData structure

 		
 Search, Sort, and Prune

 		
 Next Steps

 		
 Working with Data

 		
 Creating Data Containers

 		
 Acquiring Data

 		
 Keeping Track

 		
 Source Logging

 		
 Channel Maintenance

 		
 Taking Notes

 		
 Checking Your Work

 		
 Getting Help

 		
 Examples

 		
 Tests

 		
 Command-Line Help

 		
 Dedicated Help Functions

 		
 Formats Guide

 		
 Help-Only Functions

 		
 All About Keywords

 		
 Time-Series Files

 		
 Supported File Formats

 		
 Supported Keywords

 		
 Performance Tips

 		
 Channel Matching

 		
 Examples

 		
 Memory Mapping

 		
 Format Descriptions and Notes

 		
 Format-Specific Information

 		
 SEG Y

 		
 UW

 		
 Win32

 		
 Other File I/O Functions

 		
 Metadata Files

 		
 Supported File Formats

 		
 Supported Keywords

 		
 HDF5 Files

 		
 Supported Keywords

 		
 XML Meta-Data

 		
 StationXML

 		
 QuakeML

 		
 Web Services

 		
 Time-Series Data

 		
 Keywords

 		
 Station Metadata

 		
 Examples

 		
 Bad Requests

 		
 SeedLink

 		
 Keywords

 		
 Special Behavior

 		
 Special Methods

 		
 SeedLink Utilities

 		
 Write Suppport

 		
 Write Functions

 		
 HDF5/ASDF

 		
 QuakeML

 		
 SAC

 		
 SeisIO Native

 		
 Station XML

 		
 Data Processing

 		
 Basic Operations

 		
 Customizable Operations

 		
 Convert Seismograms

 		
 Fill Gaps

 		
 Merge

 		
 Seismic Instrument Response

 		
 Synchronize

 		
 Taper

 		
 Zero-Phase Filter

 		
 Submodules

 		
 Using Submodules

 		
 RandSeis

 		
 SEED

 		
 Scanning SEED Volumes

 		
 UW

 		
 Nodal

 		
 Reading Nodal Data Files

 		
 Supported Keywords

 		
 Supported File Formats

 		
 Working with NodalData objects

 		
 NodalData Assumptions

 		
 Other Differences from SeisData objects

 		
 Types

 		
 Quake

 		
 Types

 		
 Web Queries

 		
 Notes

 		
 Notes

 		
 References

 		
 Web Query Keywords

 		
 Example

 		
 Utility Functions

 		
 Reading Earthquake Data Files

 		
 Supported File Formats

 		
 Supported Keywords

 		
 QuakeML

 		
 SeisHDF

 		
 Additional Functions

 		
 Supported Keywords

 		
 Appendices

 		
 Time Syntax

 		
 Time Types and Behavior

 		
 Data Requests Syntax

 		
 Channel ID Syntax

 		
 SeisIO Standard Keywords

 		
 Utility Functions

 		
 SeisIO Native Format

 		
 SeisIO File

 		
 Simple Object Types

 		
 Location Types

 		
 Response Types

 		
 The Misc Dictionary

 		
 Compound Object Types

 		
 Data Type Codes

 		
 File Format Version History

_static/comment-bright.png

_static/ajax-loader.gif

